Минимизация светового и теневого фокального пятна с контролируемым ростом боковых лепестков в фокусирующих системах с высокой числовой апертурой

Хонина С.Н., Волотовский С.Г.

Аннотация:
В работе рассмотрена минимизация размера фокального пятна (светового или теневого) при различных типах поляризации за счёт дополнительной аподизации выходного зрачка фокусирующей системы оптическим элементом с вихревой фазовой зависимостью от угла и полиномиальной амплитудной зависимостью от радиуса. Коэффициенты в радиальном полиноме оптимизировались с учётом выполнения определённых условий, в частности, сохранения энергетической эффективности и обеспечения заданного уровня боковых лепестков. Поиск коэффициентов выполнялся на основе минимизации функционала с использованием метода Брента.

Abstract:
Minimization of focal spot size (light or dark) is considered at various types of polarization due to additional apodization of a pupil of focusing system by optical element with a phase function which depends as polynomial on radius and vortical on angle. Coefficients in a radial polynomial were optimized in view of satisfaction of the certain conditions, in particular, preservation of power efficiency and maintenance of the certain level of side lobes. Searching of coefficients was carried out on by minimization of a functional with use of the Brent’s method.

Ключевые слова :
размер фокального пятна, фокусирующая система c высокой числовой апертурой, преодоление дифракционного предела с контролируемым ростом боковых лепестков.

Key words:
focal spot size, focusing system with the high numerical aperture, diffraction limit overcoming with controllable growth of side lobes.

Литература:

  1. Quabis, S. Focusing light to a tighter spot / S. Quabis // Opt. Commun. - 2000. - V. 179. - P. 1-7.
  2. Dorn, R. Sharper focus for a radially polarized light beam / R. Dorn // Phys. Rev. Lett. - 2003. - V. 91. - P. 233901.
  3. Helseth, L.E. Smallest focal hole / L.E. Helseth // Opt. Commun. - 2006. - V. 257. - P. 1-8.
  4. Хонина, С.Н. Анализ возможности субволновой локализации света и углубления фокуса высокоапертурной фокусирующей системы при использовании вихревой фазовой функции пропускания / С.Н. Хонина, С.Г. Волотовский // Электромагнитные волны и электронные системы. - 2010. - № 11. - С. 6-25.
  5. Хонина, С.Н. Управление вкладом компонент векторного электрического поля в фокусе высокоапертурной линзы с помощью бинарных фазовых структур / С.Н. Хонина, С.Г. Волотовский // Компьютерная оптика. - 2010. - Т. 34, № 1. - С. 58-68.
  6. Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa and S. Sato // J. Opt. Soc. Am. A. - 2007. - V. 24. - P. 1793-1798.
  7. Хонина, С.Н. Анализ влияния волновых аберраций на уменьшение размеров фокального пятна в высокоапертурных фокусирующих системах / С.Н. Хонина, А.В. Устинов, Е.А. Пелевина // Компьютерная оптика. - 2011. - Т. 35, № 2. - С. 203-219.
  8. Artl, J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam / J. Artl and M.J. Padgett // Opt. Lett. - 2000. - V. 25. - P. 191-193.
  9. Hell, S.W. Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy / S.W. Hell and J. Wichmann // Opt. Lett. - 1994. - V. 19. - P. 780-782.
  10. Biss, D.P. Dark field imaging with cylindrical-vector beams / D.P. Biss, K.S. Youngworth and T.G. Brown // Appl. Opt. - 2006. - V. 45. - P. 470-479.
  11. Khonina, S.N. Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system / S.N. Khonina, N.L. Kazanskiy and S.G. Volotovsky // Optical Memory and Neural Networks (Allerton Press). - 2011. - V. 20(1). - P. 23-42.
  12. Brent, R.P. Algorithms for Minimization Without derivatives / R.P. Brent. - Prentice-Hall, 1973. - 195 p.
  13. Handbook of Mathematical Functions / ed. by. M. Abra­movitz, I.A. Stegun.- National Bureau of Standards, Applied Math. Series, 1965.
  14. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications / Qiwen Zhan // Advances in Optics and Photonics. - 2009. - V. 1. - P. 1-57.
  15. Khonina, S.N. Optimization of focusing of linearly polarized light / S.N. Khonina and I. Golub // Opt. Lett. - 2011. - V. 36. - P. 352-354.
  16. Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image ?eld in an aplanatic system / B. Richards and E. Wolf // Proc. R. Soc. London Ser. A. - 1959. - V. 253. - P. 358-379.
  17. http://alglib.sources.ru/
  18. Sales, T.R.M. Diffractive superresolution elements / T.R.M. Sales and G.M. Morris // J. Opt. Soc. Am. A. - 1997. - Vol. 14. - P. 1637.
  19. Bewersdorf, J. 4pi-confocal microscopy is coming of age / Joerg Bewersdorf, Alexander Egner, Stefan W. Hell // G.I.T. Imaging & Microscopy. - 2004. - Vol. 4. - P. 24-25.
  20. Helseth, L.E. Breaking the diffraction limit in nonlinear materials / L.E. Helseth // Opt. Commun. - 2005. - Vol. 256. - P. 435.
  21. Toraldo di Francia, G. Supergain antennas and optical resolving power / G. Toraldo di Francia // Nuovo Ci­mento, Suppl. - 1952. - Vol. 9. - P. 426.
  22.  Huang, F.M. Super-resolution without evanescent waves / F.M. Huang and N.I. Zheludev // Nano Lett. - 2009. - Vol. 9. - P. 1249-1254.
  23. Grosjean, T. Photopolymers as vectorial sensors of the electric field / T. Grosjean and D. Courjon // Optics Express. - 2006. -Vol. 14, Issue 6. - P. 2203-2210.
  24. Prudnikov, A.P. Integrals and Series. Vol. 2. Special Functions / A.P. Prudnikov, Yu.A. Brychkov and O.I. Ma­richev. - New York: Gordon & Breach Sci. Publ., 1990.

References:

  1. Quabis, S. Focusing light to a tighter spot / S. Quabis // Opt. Commun. - 2000. - V. 179. - P. 1-7.
  2. Dorn, R. Sharper focus for a radially polarized light beam / R. Dorn // Phys. Rev. Lett. - 2003. - V. 91. - P. 233901.
  3. Helseth, L.E. Smallest focal hole / L.E. Helseth // Opt. Commun. - 2006. - V. 257. - P. 1-8.
  4. Khonina, S.N. Possibility Analysis of Subwavelength Light Localization and Focus Extending for High-Aperture Focusing System Using Vortical Phase Transmission Function / S.N. Khonina, S.G. Volotovsky // Electromagnetic Waves and Elecronic Systems. - 2010. - N 11. - P. 6-25. - (In Russian).
  5. Khonina, S.N. Control of contribution of components of vector electric field in focus of a high-aperture lens by means of binary phase structures / S.N. Khonina, S.G. Volotovsky // Computer Optics. - 2010. - V. 34, N 1. - P. 58-68. - (In Russian).
  6. Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa and S. Sato // J. Opt. Soc. Am. A. - 2007. - V. 24. - P. 1793-1798.
  7. Khonina, S.N. Aanalysis of wave aberration influence on reducing focal spot size in a high-aperture focusing system / S.N. Khonina, A.V. Ustinov, E.A. Pelevina // Computer Optics. - 2011. - V. 35, N 2. - P. 203-219. - (In Russian).
  8. Artl, J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam / J. Artl and M.J. Padgett // Opt. Lett. - 2000. - V. 25. - P. 191-193.
  9. Hell, S.W. Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy / S. W. Hell and J. Wichmann // Opt. Lett. - 1994. - V. 19. - P. 780-782.
  10. Biss, D.P. Dark field imaging with cylindrical-vector beams / D.P. Biss, K.S. Youngworth and T.G. Brown // Appl. Opt. - 2006. - V. 45. - P. 470-479.
  11. Khonina, S.N. Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system / S.N. Khonina, N.L. Kazanskiy and S.G. Volotovsky // Optical Memory and Neural Networks (Allerton Press). - 2011. - V. 20(1). - P. 23-42.
  12. Brent, R.P. Algorithms for Minimization Without derivatives / R.P. Brent. - Prentice-Hall, 1973. - 195 p.
  13. Handbook of Mathematical Functions / ed. by. M. Abra­movitz, I.A. Stegun. - National Bureau of Standards, Applied Math. Series, 1965.
  14. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications / Qiwen Zhan // Advances in Optics and Photonics. - 2009. - V. 1. - P. 1-57.
  15. Khonina, S.N. Optimization of focusing of linearly polarized light / S.N. Khonina and I. Golub // Opt. Lett. - 2011. - V. 36. - P. 352-354.
  16. Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image ?eld in an aplanatic system / B. Richards and E. Wolf // Proc. R. Soc. London Ser. A. - 1959. - V. 253. - P. 358-379.
  17. http://alglib.sources.ru/
  18. Sales, T.R.M. Diffractive superresolution elements / T.R.M. Sales and G.M. Morris // J. Opt. Soc. Am. A. - 1997. - Vol. 14. - P. 1637.
  19. Bewersdorf, J. 4pi-confocal microscopy is coming of age / Joerg Bewersdorf, Alexander Egner, Stefan W. Hell // G.I.T. Imaging & Microscopy. - 2004. - Vol. 4. - P. 24-25.
  20. Helseth, L.E. Breaking the diffraction limit in nonlinear materials / L.E. Helseth // Opt. Commun. - 2005. - Vol. 256. - P. 435.
  21. Toraldo di Francia, G. Supergain antennas and optical resolving power / G. Toraldo di Francia // Nuovo Ci­mento, Suppl. - 1952. - Vol. 9. - P. 426.
  22.  Huang, F.M. Super-resolution without evanescent waves / F.M. Huang and N.I. Zheludev // Nano Lett. - 2009. - Vol. 9. - P. 1249-1254.
  23. Grosjean, T. Photopolymers as vectorial sensors of the electric field / T. Grosjean and D. Courjon // Optics Express. - 2006. -Vol. 14, Issue 6. - P. 2203-2210.
  24. Prudnikov, A.P. Integrals and Series. Vol. 2. Special Functions / A.P. Prudnikov, Yu.A. Brychkov and O.I. Ma­richev. - New York: Gordon & Breach Sci. Publ., 1990.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846) 332-56-20