Моделирование работы гиперспектрометра, основанного на схеме Оффнера, в рамках геометрической оптики
Казанский Н.Л.
, Харитонов С.И., Карсаков А.В., Хонина С.Н.

PDF, 361 kB

DOI: 10.18287/0134-2452-2014-38-2-271-280

Страницы: 271-280.

Аннотация:
Рассмотрено сравнительное моделирование гиперспектрометра, основанного на схеме Оффнера с призмами или дифракционной решёткой, в рамках геометрической оптики. Показано, что использование дифракционной решётки вместо призмы приводит к более равномерному разбросу спектральных компонент диспергированного изображения.

Ключевые слова :
гиперспектрометр, схема Оффнера, диспергирующий элемент, спектральные компоненты изображения.

Литература:

  1. Фурсов, В.А. Тематическая классификация гиперспектральных изображений по показателю сопряжённости / В.А. Фурсов, С.А. Бибиков, О.А. Байда // Компьютерная оптика. – 2014. – Т. 38, № 1. – С. 154-158.
  2. Журавель, Ю.Н. Особенности обработки гиперспектральных данных дистанционного зондирования при решении задач мониторинга окружающей среды / Ю.Н. Журавель, А.А. Федосеев // Компьютерная оптика. – 2013. – Т. 37, № 4. – С. 471-476.
  3. Гашников, М.В. Иерархическая сеточная интерполяция при сжатии гиперспектральных изображений / М.В. Гашников, Н.И. Глумов // Компьютерная оптика. – 2014. – Т. 38, № 1. – С. 87-93.
  4. Green, R.O. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS) / R.O. Green [et al.] // Remote Sensing of Environment. – 1998. – V. 65(3). – P. 227-248.
  5. Rickard, L.J. HYDICE: An airborne system for hyperspectral imaging / L.J. Rickard [et al.] // Optical Engineering and Photonics in Aerospace Sensing. – 1993. – P. 173-179.
  6. Геликонов, Г.В. Дисперсионный оптический элемент для получения линейного оптического спектра / Г.В. Ге­ликонов, В.М. Геликонов, П.А. Шилягин // Патент РФ на изобретение № 2398193 C2 от 27.08.2010. Бюлл. № 24.
  7. Lee, J.H. Optical Design of A Compact Imaging Spectrometer for STSAT3 / Jun Ho Lee, Tae Seong Jang, Ho-Soon Yang, Seung-Wu Rhee // Journal of the Optical Society of Korea. – 2008. – V. 12, Issue 4. – P. 262-268.
  8. Lee, J.H. Optomechanical Design of a Compact Imaging Spectrometer for a Microsatellite STSAT3 / Jun Ho Lee, Chi Weon Lee, Yong Min Kim, Jae Wook Kim // Journal of the Optical Society of Korea. – 2009. – V. 13, Issue 2. – P. 193-200.
  9. Lee, J.H. A very compact imaging spectrometer for the micro-satellite STSAT3 / Jun Ho Lee, Kyung In Kang, Jong Ho Park // International Journal of Remote Sensing. – 2011. – V. 32, Issue 14. – P. 3935-3946.
  10. Lee, J.H. Flight Model Development of a Compact Imaging Spectrometer for a Microsatellite STSAT3 / Jun Ho Lee, Tae Seong Jang, Kyung In Kang, and Seung-Wu Rhee // Proc. of the conference “Optical Remote Sensing of the Environment”, Tucson, AZ, June 7, 2010.
  11. Lobb, D.R. Imaging spectrometer // Patent No. US 6288781 B1. Date of Publication 11.09.2001.
  12. Mouroulis, P. Optical design of a compact imaging spectrometer for planetary mineralogy / P. Mouroulis, R.G. Sellar, D.W. Wilson // Optical Engineering. – 2007. – V. 46, Issue 6 – P. 063001-1-9.
  13. Mouroulis, P. Convex grating types for concentric imaging spectrometers / P. Mouroulis, D.W. Wilson, P.D. Maker, R.E. Muller // Applied Optics. – 1998. – V. 37, Issue 31. – P. 7200-7208.
  14. Lobb, D.R. Imaging spectrometer // Patent No. EP 0961920 B1. Date of Publication 12.05.2004.
  15. Chrisp, M.P. Convex diffraction grating imaging spectrometer // Patent No. US 5880834 A. Date of Publication 9.03.1999.
  16. Reininger, F.M. Imaging spectrometer/camera having convex grating // Patent No. US 6100974 A. Date of Publication 8.08.2000.
  17. Nelson, N.R. Hyperspectral scene generator and method of use // Patent No. US 7106435 B2. Date of Publication 12.09.2006.
  18. Oskotsky, M. Airborne hyperspectral imaging system // Patent No. US 7944559 B2 / M. Oskotsky, M.J. Russo, Jr.  Date of Publication 17.05.2011.
  19. Offner, A. An :1.0 Camera for Astronomical Spectroscopy / A. Offner, W.B. Decker // Journal of the Optical Society of America. – 1951. – V. 41. – P. 169-169.
  20. Prieto-Blanco, X. Off-plane anastigmatic imaging in Offner spectrometers / X. Prieto-Blanco, H. González-Nu­ñez, R. de la Fuente // Journal of the Optical Society of America A. – 2011. – V. 28 – P. 2332-2339.
  21. González-Núñez, H. Pupil aberrations in Offner spectrometers / H. González-Núñez, X. Prieto-Blanco, R. de la Fuente // Journal of the Optical Society of America A. – 2012. – V. 29 – P. 442-449.
  22. Prieto-Blanco, X. The Offner imaging spectrometer in quadrature / X. Prieto-Blanco, C. Montero-Orille, H. González-Nuñez, M.D. Mouriz, E.L. Lago, R. de la Fuente // Optics Express. – 2010. – V. 18 – P. 12756-12769.
  23. Prieto-Blanco, X. Analytical design of an Offner imaging spectrometer / X. Prieto-Blanco, C. Montero-Orille, B. Cou­ce, R. de la Fuente // Optics Express. – 2006. – V. 14 – P. 9156-9168.
  24. Johnson, W.R. All-reflective snapshot hyperspectral ima­ger for ultraviolet and infrared applications / W.R. Johnson, D.W. Wilson, G. Bearman // Optics Letters. – 2005. – V. 30 – P. 1464-1466.
  25. Лабусов, В.А. Многоканальный спектрометр / В.А. Ла­бусов, И.А. Зарубин, М.С. Саушкин // Патент РФ на изобретение № 2375686 C2 от 10.12.2009. Бюлл. № 34.
  26. Tennant, W.E. Graded order-sorting filter for hyperspectral imagers and methods of making the same // Patent No. US 7936528 B2. Date of Publication 3.05.2011.
  27. Norton, A. Diffraction order sorting filter for optical metrology / A. Norton, H. Tuitje, F. Stanke // Patent No. US 8107073 B2. Date of Publication 31.01.2012.
  28. Buralli, D.A. Optical performance of holographic kinoforms / D.A. Buralli, G.M. Morris, J.R. Rogers // Applied Optics. – 1989. – V. 28 – P. 976-983.
  29. Dammann, H. Blazed synthetic phase only holograms / H. Dammann // Optik. – 1970. – V. 31 – P. 95-104.
  30. Mouroulis, P. Optical design of a coastal ocean imaging spectrometer / P. Mouroulis, R.O. Green, D.W. Wilson // Optics Express. – 2008. – V. 16, Issue 12. – P. 9087-9096.
  31. Mouroulis, P. Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information / P. Mouroulis, R.O. Green, T.G. Chrien // Applied Optics. – 2000. – V. 39, Issue 13. – P. 2210-2220.
  32. Казанский, Н.Л. Математическое моделирование оптических систем / Н.Л. Казанский. – Самара: СГАУ, 2005. – 240 с.
  33. Дифракционная компьютерная оптика / Д.Л. Головашкин,  Л.Л. Досколович, Н.Л. Казанский, В.В. Котляр, В.С. Павельев, Р.В. Скиданов, В.А. Сойфер, С.Н. Хонина. – Под  ред. В.А. Сойфера. – М.: Физматлит, 2007. – 736 с.
  34. http://www.zemax.com/ [Электронный ресурс]. – Программа Zemax. Описание.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20