Study on the Mainardi beam through the fractional Fourier transforms system
Habibi F., Moradi M., Ansari A.

Department of Physics, Faculty of Sciences, Shahrekord University, Shahrekord, Iran

Department of Physics, Photonic Research Group, Shahrekord University, Shahrekord, Iran

Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, Iran

Аннотация:
In this paper, we introduced the Mainardi beam and indicated its attributes under the Fractional Fourier transform for power variations of Fractional Fourier transform. The results represent that the behavior of the Mainardi beam is similar to that of the Airy beam. The obtained formula is a very powerful tool to describe propagation of a Mainardi beam through the FFT and the FrFT systems. An analytical expression of the Mainardi beam passing through an Fractional Fourier transform system presented. The influences of the Fractional Fourier transform, rational order of the Mittag-Leffler function (Fourier transform of the Mainardi function) on the normalized intensity distribution and characteristics of the Mainardi beam in the Fractional Fourier transform system examined. Power of the Fractional Fourier transform (p) and rational order of the Mittag-Leffler function (q) control characteristics of the Mainardi beam such as effective beam size, number, width, height, and orientation of the beam spot.

Ключевые слова:
Wright function, Mainardi function, Mittag-Leffler function, Airy beam, Fractional Fourier transform.

Цитирование:
Habibi F, Moradi M, Ansari A. Study on the Mainardi beam through the fractional Fourier transforms system. Computer Optics 2018; 42(5): 751-757. DOI: 10.18287/2412-6179-2018-42-5-751-757.

Литература:

  1. Dai, H.T. Propagation dynamics of an Airy beam / H.T. Dai, Y.J. Liu, D. Luo, X.W. Sun // Optics Letters. – 2010. – Vol. 35, Issue 23. – P. 4075-4077. – DOI: 10.1364/OL.35.004075.
  2. Tang, B. Fractional Fourier transform for confluent hypergeometric beams / B. Tang, Ch. Jiang, H. Zhu // Physics Letters A. – 2012. – Vol. 376, Issues 38-39. – P. 2627-2631. – DOI: 10.1016/j.physleta.2012.07.017.
  3. Mendlovic, D. Fractional Fourier transforms and their optical implementation: I / D. Mendlovic, H.M. Ozaktas // Journal of the Optical Society of America A. – 1993. – Vol. 10, Issue 9. – P. 1875-1881. – DOI: 10.1364/JOSAA.10.001875.
  4. Ozaktas, H.M. Fractional Fourier transforms and their optical implementation. II / H.M. Ozaktas, D. Mendlovic // Journal of the Optical Society of America A. – 1993. – Vol. 10, Issue 12. – P. 2522-2531. – DOI: 10.1364/JOSAA.10.002522.
  5. Lohmann, A.W. Image rotation, Wigner rotation, and the fractional Fourier transform / A.W. Lohmann // Journal of the Optical Society of America A. – 1993. – Vol. 10, Issue 10. – P. 2181-2186. – DOI: 10.1364/JOSAA.10.002181.
  6. Cai, Y. Experimental observation of truncated fractional Fourier transform for a partially coherent Gaussian Schell-model beam / Y. Cai, Q. Lin // Journal of the Optical Society of America A. – 2008. – Vol. 25, Issue 8. – P. 2001-2010. – DOI: 10.1364/JOSAA.25.002001.
  7. Du, X. Fractional Fourier transform of truncated elliptical Gaussian beams / X. Du, D. Zhao // Applied Optics. – 2006. – Vol. 45, Issue 36. – P. 9049-9052. – DOI: 10.1364/AO.45.009049.
  8. Zhou, G. Fractional Fourier transform of a higher-order cosh-Gaussian beam / G. Zhou // Journal of Modern Optics. – 2009. – Vol. 56, Issue 7. – P. 886-892. – DOI: 10.1080/09500340902783816.
  9. Gao, Y.-Q. Characteristics of beam aligmenet in a high power four-pass laser amplifier / Y.-Q. Gao, B.-Q. Zhu, D.-Z. Liu, X.-F. Liu, Z.-Q. Lin // Applied Optics. – 2009. – Vol. 48, Issue 8. – P. 1591-1597. – DOI: 10.1364/AO.48.001591.
  10. Erden, M.F. Propagation of mutual intensity expressed in terms of the fractional Fourier transform / M.F. Erden, H.M. Ozaktas, D. Mendlovic // Journal of the Optical Society of America A. – 1996. – Vol. 13, Issue 5. – P. 1068-1071. – DOI: 10.1364/JOSAA.13.001068.
  11. Yoshimura, H. Properties of the Gaussian schell model source field in a fractional Fourier plane / H. Yoshimura, T. Iwai // Journal of the Optical Society of America A. – 1997. – Vol. 14, Issue 12. – P. 3388-3393. – DOI: 10.1364/JOSAA.14.003388.
  12. Lin, Q. Tensor ABCD law for partially coherent twisted anisotropic Gaussian-schell model beams / Q. Lin, Y. Cai // Optics Letters. – 2002. – Vol. 27, Issue 4. – P. 216-218. – DOI: 10.1364/OL.27.000216.
  13. Cai, Y. Fractional Fourier transform for partially coherent and partially polarized Gaussian-schell model beams / Y. Cai, D. Ge, Q. Lin // Journal of Optics A: Pure and Applied Optics. – 2003. – Vol. 5, Issue 5. – P. 453-459. – DOI: 10.1088/1464-4258/5/5/304.
  14. Dragoman, D. Variant fractional Fourier transformer for optical pulses / D. Dragoman, M. Dragoman, K.-H. Brenner // Optics Letters. – 1999. – Vol. 24, Issue 14. – P. 933-935. – DOI: 10.1364/OL.24.000933.
  15. Wang, F. Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics / F. Wang, Y. Cai // Journal of the Optical Society of America A. – 2007. – Vol. 24, Issue 7. – P. 1937-1944. – DOI: 10.1364/JOSAA.24.001937.
  16. Zhou, G. Fractional Fourier transform of Airy beams / G. Zhou, R. Chen, X. Chu // Applied Physics B. – 2012. – Vol. 109, Issue 4. – P. 549-556. – DOI: 10.1007/s00340-012-5117-3.
  17. Khonina, S.N. Fractional Airy beams / S.N. Khonina, A.V. Ustinov // Journal of the Optical Society of America A. – 2017. – Vol. 34, Issue 11. – P. 1991-1999. – DOI: 10.1364/JOSAA.34.001991.
  18. Belafhal, L. Theoretical introduction and generation method of a novel nondiffracting waves: Olver beams / L. Belafhal, L. Ez-Zariy, S. Hennani, H. Nebdi // Optics and Photonics Journal. – 2015. – Vol. 5, Issue 7. – P. 234-246. – DOI: 10.4236/opj.2015.57023.
  19. Mainardi, F. Fractional calculus and waves in linear viscoelasticity / F. Mainardi. – London: Imperial College Press, 2010. – 368 p. – ISBN: 978-1-84816-329-4.
  20. Morris, J.E. Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength / J.E. Morris, M. Mazilu, J. Baumgartl, T. Cizmár, K. Dholakia // Optics Express. – 2009. – Vol. 17, Issue 15. – P. 13236-13245. – DOI: 10.1364/OE.17.013236.
  21. Gradshteyn, I.S. Tables of integrals, series and products / I.S. Gradshteyn, I.M. Ryzhik. – New York: Academic Press, 1980. – 1206 p. – ISBN: 978-0-12-294760-5.
  22. Mittag-Leffler, G. Sur la Nouvelle fonction Ea(x). Comptes Rendus de l'Académie des Sciences – Series I / G. Mittag-Leffler // Mathematics. – 1903. – Vol. 137. – P. 554-558.
  23. Wiman, A. Über den Fundamentalsatz in der Teorie der Funktionen Ea(x) / A. Wiman // Acta Mathematica. – 1905. – Vol. 29, Issue 1. – P. 191-201.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20