(42-5) 12 * << * >> * Русский * English * Содержание * Все выпуски

Calculation of effective mode field area of photonic crystal fiber with digital image processing algorithm
Tan Y.L., Wang H.L., Wang Y.R.

Department of Statistics, College of Science, North China University of Science and Technology, Tangshan, Hebei 063210, China
Department of Basic, Tangshan College, Tangshan, Hebei 063000, China

 PDF, 238kB

DOI: 10.18287/2412-6179-2018-42-5-816-821

Страницы: 816-821.

Аннотация:
Photonic crystal fiber as a new type of optical fiber has been extensively applied because of its unique properties. The effective mode area of optical fiber is an important parameter, which has a great influence on the performance of optical fiber. In this study, digital image processing algorithm was used for preprocessing to improve the accuracy of calculation of mode field area. Then the effective mode field area of optical fiber was calculated using Matlab based Gauss fitting method. Take single-mode fiber G.652 as an example, the effective mode field area was calculated using the traditional algorithm and digital image processing algorithm respectively. It was found that the results obtained using digital image processing algorithm were within the allowed error range, suggesting the effectiveness of the algorithm. Then the calculation of the effective mode area of the triangular lattice photonic crystal fiber further verified the reliability of the algorithm.

Ключевые слова:
photonic crystal fiber, effective mode field area, image processing.

Цитирование:
Tan YL, Wang HL, Wang YR. Calculation of effective mode field area of photonic crystal fiber with digital image processing algorithm. Computer Optics 2018; 42(5): 816-821. DOI: 10.18287/2412-6179-2018-42-5-816-821.

Литература:

  1. Fu, H.Y. High pressure sensor based on photonic crystal fiber for downhole application / H.Y. Fu, C. Wu, M.L.V. Tse, L. Zhang, K.C.D. Cheng, H.Y. Tam, B.O. Guan, C. Lu // Applied Optics. – 2010. – Vol. 49, Issue 14. – P. 2639-2643. – DOI: 10.1364/AO.49.002639.
  2. Deng, M. Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber / M. Deng, C.-P. Tang, T. Zhu, Y.-J. Rao // Optics Communications. – 2011. – Vol. 284, Issue 12. – P. 2849-2853. – DOI: 10.1016/j.optcom.2011.02.061.
  3. Gao, R. All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers / R. Gao, Y. Jiang, S. Abdelaziz // Optics Letters. – 2013. – Vol. 38, Issue 9. – P. 1539-1541. – DOI: 10.1364/OL.38.001539.
  4. Matsui, T. Single-mode photonic crystal fiber design with ultralarge effective area and low bending loss for ultrahigh-speed WDM transmission / T. Matsui, T. Sakamoto, K. Tsujikawa, S. Tomita, M. Tsubokawa // Journal of Lightwave Technology. – 2011. – Vol. 29, Issue 4. – P. 511-515. – DOI: 10.1109/JLT.2010.2089600.
  5. Napierala, M. Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss / MNapierala, T. Nasilowski, E. Beres-Pawlik, P. Mergo, F. Berghmans, H. Thienpont // Optics Express. – 2011. – Vol. 19, Issue 23. – P. 22628-22636. – DOI: 10.1364/OE.19.022628.
  6. Miyagi, K. Measurements of mode field diameter and effective area for photonic crystal fibers by far field scanning technique / K. Miyagi, Y. Namihira, S.M.A. Razzak, S.F. Kaijage, F. Begum // Optical Review. – 2010. – Vol. 17, Issue 4. – P. 388-392. – DOI: 10.1007/s10043-010-0072-x.
  7. Hayashi, T. Effective area measurement of few-mode fiber using far field scan technique with Hankel transform generalized for circularly-asymmetric mode / T. Hayashi, Y. Tamura, T. Nagashima, K. Yonezawa, T. Taru, K. Igarashi, D. Soma, Y. Wakayama, T. Tsuritani // Optics Express. – 2018. – Vol. 26, Issue 9. – P. 11137-11146. – DOI: 10.1364/OE.26.011137.
  8. Mishra, S.S. Polarization maintaining highly birefringent small mode area photonic crystal fiber at telecommunication window / S.S. Mishra, V.K. Singh // Journal of Microwaves, Optoelectronics and Electromagnetic Applications. – 2011. – Vol. 10, Issue 1. – P. 33-41. – DOI: 10.1590/S2179-10742011000100004.
  9. Medjouri, A. Analysis of a new circular photonic crystal fiber with large mode area / A. Medjouri, L.M. Simohamed, O. Ziane, A. Boudrioua // Optik. – 2015. – Vol. 126, Issue 24. – P. 5718-5724. – DOI: 10.1016/j.ijleo.2015.09.035.
  10. Abdelaziz, I. Enhanced effective area photonic crystal fiber with novel air hole design / I. Abdelaziz, F. Abdelmalek, H. Ademgil, S. Haxha, T. Gorman, H. Bouchriha // Journal of Lightwave Technology. – 2010. – Vol. 28, Issue 19. – P. 2810-2817. – DOI: 10.1109/JLT.2010.2064758.
  11. Saini, T.S. Triangular-core large-mode-area photonic crystal fiber with low bending loss for high power applications / T.S. Saini, A. Kumar, R.K. Sinha // Applied Optics. – 2014. – Vol. 53, Issue 31. – P. 7246-7251. – DOI: 10.1364/AO.53.007246.
  12. Liu, Y. Splicing and end facet optimization of large-mode-area photonic crystal fiber for high power application / Y. Liu, X. Dong, Z. Liu, B. Sun, J. Ji, X. Yu // 2017 16th International Conference on Optical Communications and Networks (ICOCN). – 2017. – P. 1-3. – DOI: 10.1109/ICOCN.2017.8121275.
  13. Miyagi, K. Dynamic control of mode field diameter and effective area by germanium doping of hexagonal photonic crystal fibers / K. Miyagi, Y. Namihira, Y. Kasamatsu, M.A. Hossain // Optical Review. – 2013. – Vol. 20, Issue 4. – P. 327-331. – DOI: 10.1007/s10043-013-0059-5.
  14. Filipenko, O. Determining of the photonic-crystal fibers mode field size at his near field image / O. Filipenko, O. Sychova, G. Ponomaryova // Third International Scientific-Practical Conference Problems of Infocommunications Science and Technology (PIC S&T). – 2017. – P. 81-83. – DOI: 10.1109/INFOCOMMST.2016.7905342.
  15. Thakur, H.V. Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection / H.V. Thakur, S.M. Nalawade, S. Gupta, R. Kitture, S.N. Kale // Applied Physics Letters. – 2011. – Vol. 99, Issue 16. – 161101. – DOI: 10.1063/1.3651490.
  16. Yu, Y. Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling / Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, W. Tong // Optics Express. – 2010. – Vol. 18, Issue 15. – P. 15383-15388. – DOI: 10.1364/OE.18.015383.
  17. Qiu, S.-J. Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity / S.-J. Qiu, Y. Chen, F. Xu, Y-Q. Lu // Optics Letters. – 2012. – Vol. 37, Issue 5. – P. 863-865. – DOI: 10.1364/OL.37.000863.
  18. Vigneswaran, D. Salinity sensor using photonic crystal fiber / D. Vigneswaran, N. Ayyanar, M. Sharma, M. Sumathi, M.S.M. Rajan, K. Porsezian // Sensors and Actuators A: Physical. – 2018. – Vol. 269. – P. 22-28. – DOI: 10.1016/j.sna.2017.10.052.
  19. Li, H.-T. Dual-core photonic crystal fiber for hydrostatic pressure sensing / H.-T. Li, X.-L. Wang, L.-J. She, D-R. Chen // Acta Photonica Sinica. – 2017. – Vol. 46, Issue 7. – 0706007. – DOI: 10.3788/gzxb20174607.0706007.

  20. © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20