(43-6) 18 * << * >> * Русский * English * Содержание * Все выпуски

Optical elements based on silicon photonics

M.A. Butt1, S.N. Khonina1,2, N.L. Kazanskiy1,2

Samara National Research University,
443086, Russia, Samara, Moskovskoye Shosse 34,
IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF, 1822 kB

DOI: 10.18287/2412-6179-2019-43-6-1079-1083

Страницы: 1079-1083.

Язык статьи: английский.

Аннотация:
Silicon photonics is gaining substantial impulse because it permits optical devices to be realized inexpensively using standard semiconductor fabrication techniques and integrated with microelectronic chips. In this paper, we designed few optical elements such as optical power splitter, polarization beam splitter and Bragg grating based on silicon platform simulated using finite element method.

Ключевые слова:
optical power splitter, polarization beam splitter, Bragg grating, finite element method.

Цитирование:
Butt, M.A. Optical elements based on silicon photonics / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Computer Optics. – 2019. – Vol. 43(6).  – 1079-1083. – DOI: 10.18287/2412-6179-2019-43-6-1079-1083.

Благодарности:
This work was financially supported by the Russian Foundation for Basic Research (grant No. 16-29-09528_ofi_m) for numerical calculations, by the Ministry of Science and Higher Education within the State assignment FSRC "Crystallography and Photonics" RAS (No. 007-GZ/Ch3363/26) for theoretical results.

References:

  1. Wu J, Shen YL, Reinhardt K, Szu H, Dong B. A nanotechnology enhancement to Moore's law. Applied Computational Intelligence and Soft Computing 2012; 2013: 1-13. DOI: 10.1155/2013/426962.
  2. Xin XK. An indirect measurement of energy gap for silicon and germanium. Solid-State Electronics 1986; 29(9): 845-847. DOI: 10.1016/0038-1101(86)90001-8.
  3. Dong J, Liu J, Kang G, Xie J, Wang Y. Pushing the resolution of photolithography down to 15 nm by surface plasmon interference. Sci Rep 2014; 4: 5618. DOI: 10.1038/srep05618.
  4. Radamson HH, et al. Miniaturization of CMOS. Micromachines 2019; 10: 293. DOI: 10.3390/mi10050293.
  5. Huilian M, Jianyi Y, Xiaoqing J, Minghua W. Compact and economical MMI optical power splitter for optical communication. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420) 200: 1561-1564. DOI: 10.1109/ICCT.2000.890959.
  6. Burtscher C, Seyringer D, Kuzma A, Lucki M. Modeling and optimization of 1x32 Y-branch splitter for optical transmission systems. Optical and Quantum Electronics 2017; 49: 396. DOI: 10.1007/s11082-017-1228-8.
  7. Butt MA, Kozlova ES, Khonina SN. Modeling of a straight channel and Y-splitter waveguides by loading SiO2 planar waveguide with MgF2. Progress in Electromagnetics Research Symposium – Spring (PIERS) 2017: 2472-2477. DOI: 10.1109/PIERS.2017.8262167.
  8. Malka D, Danan Y, Ramon Y, Zalevsky Z. A photonic 1x4 power splitter based on multimode interference in silicon-gallium-nitride slot waveguide structures. Materials 2016; 9(7): 516. DOI: 10.3390/ma9070516.
  9. Huang W-P. Coupled-mode theory for optical waveguides: an overview. J Opt Soc Am A 1994; 11(3): 963-983. DOI: 10.1364/JOSAA.11.000963.
  10. Butt MA, Khonina SN, Kazanskiy NL. A T-shaped 1x8 balanced optical power splitter based on 90 ° bend asymmetric vertical slot waveguides. Laser Phys 2019; 29(4): 046207. DOI: 10.1088/1555-6611/ab0372.
  11. Butt MA, Khonina SN, Kazanskiy NL. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor. J Mod Opt 2018; 65(2): 174-178. DOI: 10.1080/09500340.2017.1382596.
  12. Degtyarev SA, Butt MA, Khonina SN, Skidanov RV. Modelling of TiO2 based slot waveguides with high optical confinement in sharp bends. International Conference on Computing, Electronic and Electrical Engineering (ICE Cube) 2016: 10-13. DOI: 10.1109/ICECUBE.2016.7495222.
  13. Butt MA, Khonina SN, Kazanskiy NL. Compact design of a polarization beam splitter based on silicon-on-insulator platform. Laser Phys 2018; 28(11): 116202. DOI: 10.1088/1555-6611/aadf18.
  14. Huang J, Yang J, Chen D, He X, Han Y, Zhang J, Zhang Z. Ultra-compact broadband polarization beam splitter with strong expansibility. Photonics Research 2018; 6(6): 574-578. DOI: 10.1364/PRJ.6.000574.
  15. Chang LM, Liu L, Gong YH, Tan MQ, Yu YD, Li ZY. Polarization-independent directional coupler and polarization beam splitter based on asymmetric cross-slot waveguides. Appl Opt 2018; 57(4): 678-683. DOI: 10.1364/AO.57.000678.
  16. Rashleigh SC, Ulrich R. Polarization mode dispersion in single-mode fibers. Opt Lett 1978; 3(2): 60-62. DOI: 10.1364/OL.3.000060.
  17. Suresh R, Tjin SC, Hao J. Applications of fiber bragg grating sensors. In Book: Soh C-K, Yang Y, Bhalla S. Smart materials in structural health monitoring, control and biomechanics. Heidelberg, New York, Dordrecht, London: Springer; 2012. DOI: 10.1007/978-3-642-24463-6_12.
  18. Butt MA, Khonina SN, Kazanskiy NL. Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications. J Mod Opt 2019; 66(11): 1172-1178. DOI: 10.1080/09500340.2019.1609613

 


© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20