(46-4) 07 * << * >> * Русский * English * Содержание * Все выпуски

Genetic algorithm for optimizing Bragg and hybrid metal-dielectric reflectors
E.I. Girshova 1,2, A.V. Ogurtcov 1, A.V. Belonovski 1,2, K.M. Morozov 1,2, M.A. Kaliteevski 1,2

Alferov University, 8/3 Khlopina Str., St. Petersburg, 194021, Russia;
ITMO University, 49 Kronverksky Pr., St. Petersburg, 197101, Russia

 PDF, 952 kB

DOI: 10.18287/2412-6179-CO-1128

Страницы: 561-566.

Язык статьи: English.

Аннотация:
Highly efficient reflectors are in demand in the rapidly developing optoelectronics. At the moment, distributed Bragg reflectors made of semiconductor materials are mainly used in this capacity. A lot of time and financial resources are spent on their production. Reducing the thickness of the reflector while maintaining its reflectivity would make these devices more affordable and extend their lifetime by reducing thermal noise. With the help of genetic optimization algorithms, the structures of multilayer semiconductor and combined metal-semiconductor reflectors were obtained, having a smaller thickness and equal optical characteristics than those of classical analogues. In particular, a 29% reduction in the thickness of the silicon/silica Bragg reflector was achieved without compromising performance.

Ключевые слова:
distributed Bragg reflector, multilayered structures, genetic algorithm, hybrid metal-dielectric mirror.

Благодарности
The work has been supported by the Russian Science Foundation 21-12-00304. This work is financially supported by the Government of the Russian Federation (The federal academic leadership program Priority 2030).

Citation:
Girshova EI, Ogurtcov AV, Belonovski AV, Morozov KM, Kaliteevski MA. Genetic algorithm for optimizing Bragg and hybrid metal-dielectric reflectors. Computer Optics 2022; 46(4): 561-566. DOI: 10.18287/2412-6179-CO-1128.

References:

  1. Liu A, Wolf P, Lott JA, Bimberg D. Vertical-cavity surface-emitting lasers for data communication and sensing. Photon Res 2019; 7(23): 121-136. DOI: 10.1364/PRJ.7.000121.
  2. Bielecki Z, Stacewicz T, Wojtas G, Mikołajczyk J, Szabra D, Prokopiuk A. Selected optoelectronic sensors in medical applications. Opto-Electron Rev 2018; 1(1): 122-133. DOI: 10.1016/j.opelre.2018.02.007.
  3. Sun C, Ding Y, Li Zh, Qi W, Yu Yu. Key multimode silicon photonic devices inspired by geometrical optics. ACS Photonics 2020; 7(8): 2037-2045.
  4. Wang Sh. Principles of distributed feedback and distributed Bragg-reflector lasers. IEEE J Quantum Electron 1974; 10(4): 413-427. DOI: 10.1109/JQE.1974.1068152.
  5. Nunn W, Truttmann TK, Jalan B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. J Mater Res 2021; 36: 4846-4864. DOI: 10.1557/s43578-021-00377-1.
  6. Won PC, Yi L, Wei Z, Leng JS, Williams JAR. Distributed temperature measurement using a Fabry–Perot effect based chirped fiber Bragg grating. Opt Commun 2006; 265(2): 494-499. DOI: 10.1016/j.optcom.2006.04.024.
  7. Flaminio R, Franc J, Michel C, Morgado N, Pinard L, Sassolas B. A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors. Class Quantum Grav 2008; 27: 084030.
  8. Agresti J, Castaldi G, DeSalvo R, Galdi V, Pierro V, Pinto IM. Optimized multilayer dielectric mirror coatings for gravitational wave interferometers. Proc SPIE 2006; 6286: 628608. DOI: 10.1117/12.678977.
  9. Pierro V, Fiumara V, Chiadini F, Granata V,  Durante O, Neilson J, Di Giorgio C, Fittipaldi R, Carapella G, Bobba F, Principe M, Pinto IM. Ternary quarter wavelength coatings for gravitational wave detector mirrors: Design optimization via exhaustive search. Phys Rev Research 2021; 3(2): 023172. DOI: 10.1103/PhysRevResearch.3.023172.
  10. Kim H, Kaya M, Hajimirza Sh. Broadband solar distributed Bragg reflector design using numerical optimization. Sol Energy 2021; 221: 384-392. DOI: 10.1016/j.solener.2021.04.045.
  11. Tikhonravov AV, Trubetskov MK, DeBell GW. Application of the needle optimization technique to the design of optical coatings. Appl Opt 1996; 35: 5493-5508.
  12. Mai HH. Designing multilayer dielectric filter based on TiO2/SiO2 for fluorescence microscopy applications. Computer Optics 2020; 44(2): 209-213. DOI: 10.18287/2412-6179-CO-618.
  13. Pervak V, Krausz F, Apolonski A. Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers. Opt Lett 2007; 32: 1183-1185.
  14. Pervak V, Teisset C, Sugita A, Naumov S, Krausz F, Apolonski A. High-dispersive mirrors for femtosecond lasers. Opt Express 2008; 16: 10220-10233.
  15. Kharitonova EA, Girshova EI, Belonovskii AV, et al. Optical and thermal properties of a hybrid metal–dielectric reflector. Tech Phys Lett 2021; 47: 61-64. DOI: 10.1134/S1063785021010223.
  16. Mehta K, Detchprohm K, Park YU, Liu Y-S, Moreno O, Alugubelli OR, Wang S, Ponce FA, Shen S, Dupuis RD, Yoder PD. High reflectivity hybrid AlGaN/Silver distributed bragg reflectors for use in the UV-visible spectrum. IEEE J Quantum Electron 2017; 53(6): 2100208. DOI: 10.1109/JQE.2017.2766288.
  17. Sarzała R, Marciniak M, Czyszanowski T. Thermal properties of GaN-based semiconductor-metal subwavelength grating VCSELs and novel current injection scheme. J Phys D: Appl Phys 2018; 51(28): 285102. DOI: 10.1088/1361-6463/aac85a.
  18. Deppe DG, Li M, Yang X, Bayat M. Advanced VCSEL technology: Self-heating and intrinsic modulation response. IEEE J Quantum Electron 2018; 54(3): 1-9. doi: 10.1109/JQE.2018.2826718.
  19. Kuchta DM, Rylyakov AV, Schow CL, Proesel JE, Baks CW, Westbergh P, Gustavsson JV, Larsson AA. 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 °C. J Lightw Technol 2015; 33: 802-810.
  20. Toanen V, Symonds C, Benoit JM, Gassenq A, Lemaltre A, Bellessa J. Room-temperature lasing in a low-loss tamm plasmon cavity. ACS Photonics 2020; 7(11): 2952-2957. DOI: 10.1021/acsphotonics.0c00781.
  21. Verly PG. Optimum phase for rugate filter synthesis by Fourier transforms. Appl Opt 2011; 50: C124-C128.
  22. Zhang G, Billingsley DC, Shoemaker D. Advanced LIGO coating research, in optical interference coatings. OSA Technical Digest Series (Optical Society of America) 2004: FB5.
  23. Juarez AA. 25 Gb/s transmission over 1-km graded-index single-mode fiber using 910 nm SM VCSEL. 2020 Optical Fiber Communications Conference and Exhibition (OFC) 2020: 1-3.
  24. Fesenko VI. Aperiodic birefringent photonic structures based on Kolakoski sequence. Waves Random Complex Media 2014; 24(2): 174-190. DOI: 10.1080/17455030.2014.890764.
  25. Kaliteevski MA, Nikolaev VV, Abram RA. Bandgap structure of optical Fibonacci lattices after light diffraction. Opt Spectrosc 2001; 91: 109-118. DOI: 10.1134/1.1388332.
  26. Pereira S, LaRochelle S. Field profiles and spectral properties of chirped Bragg grating Fabry-Perot interferometers. Opt Express 2005; 13: 1906-1915.
  27. Rincón-Llorente G, Heras I, Rodríguez EG, Schumann E, Krause M, Escobar-Galindo R. On the effect of thin film growth mechanisms on the specular reflectance of aluminium thin films deposited via filtered cathodic vacuum arc. Coatings 2018; 8(9): 321. DOI: 10.3390/coatings8090321.
  28. Kavokin AV, Kaliteevski MA. Light-absorption effect on Bragg interference in multilayer semiconductor heterostructures. J Appl Phys 1997; 79: 595-598. DOI: 10.1063/1.360801.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20