(47-5) 18 * << * >> * Русский * English * Содержание * Все выпуски

Recognition of biosignals with nonlinear properties by approximate entropy parameters
L.A. Manilo 1, A.P. Nemirko 1

Saint Petersburg Electrotechnical University "LETI", 197022, Russia, Saint Petersburg, Professor Popov 5

 PDF, 1788 kB

DOI: 10.18287/2412-6179-CO-1345

Страницы: 832-840.

Язык статьи: English.

Аннотация:
More and more attention is being paid to the development of methods for the objective analysis of biosignals for computer medical systems. The search for new non-standard methods is aimed at improving the reliability of diagnostics and expanding the areas of their practical application.
     In this paper, methods for recognizing biomedical signals by the degree of severity of their nonlinear components are considered. An approach based on the use of approximate entropy closely related to Kolmogorov entropy (K-entropy) is used. Its parameters can be used to detect dynamic irregularities associated with nonlinear properties of signals. The algorithm for calculating this characteristic is consid-ered in detail. Based on model experiments, its main properties are analyzed.
     It is shown that the entropy of a finite sequence, calculated in accordance with a multistep pro-cedure, can give an erroneous estimate of the degree of regularity of the signal. A procedure for correcting the approximate entropy is proposed, which expands the area of analysis of this function for estimating nonlinearity. It has been established that the transition to adjusted entropy makes it possible to increase the reliability of the detection of chaotic components. A set of entropy parameters is proposed for constructing recognition procedures.
     Examples of solving the problems of detecting atrial fibrillation by the parameters of the non-linearity of the rhythmogram, as well as assessing the depth of anesthesia by the electroencephalogram (EEG) are given. Experiments conducted on real recordings of electrocardiogram (ECG) and EEG signals have shown the high efficiency of the proposed algorithms.
     The proposed methods and algorithms can be used in the development of systems for monitoring ECG of cardiological patients, as well as monitoring the depth of anesthesia by EEG during surgical operations.

Ключевые слова:
recognition of biosignals, nonlinear dynamics, approximate entropy, ECG and EEG analysis, atrial fibrillation, stages of anesthesia.

Благодарности
The research was carried out at the expense of the grant of the Russian Science Foundation No. 23-21-00215, https://rscf.ru/project/23-21-00215/.

Citation:
Manilo LA, Nemirko AP. Recognition of biosignals with nonlinear properties by approximate entropy parameters. Computer Optics 2023; 47(5): 832-840. DOI: 10.18287/2412-6179-CO-1345.

References:

  1. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 1991; 88(6): 2297-2301. DOI: 10.1073/pnas.88.6.2297.
  2. Pincus S. Approximate entropy (ApEn) as a complexity measure. Chaos 1995; 5(1): 110-117. DOI: 10.1063/1.166092.
  3. Metin A, ed. Nonlinear biomedical signal processing. Vol. 2: Dynamic analysis and modelling. New York: Wiley-IEEE Press; 2001. DOI: 10.1109/9780470545379.
  4. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 2000; 278(6): H2039-H2049. DOI: 10.1152/ajpheart.2000.278.6.H2039.
  5. Costa MD, Goldberger AL. Generalized multiscale entropy analysis: application to quantifying the complex volatility of human heartbeat time series. J Entropy 2015; 17(3): 1197-1203. DOI: 10.3390/e17031197.
  6. Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of biological signals. Phys Rev E 2005; 71(2): 021906. DOI: 10.1103/PhysRevE.71.021906.
  7. Bolea J, Bailon R, Pueyo E. On the standardization of approximate entropy: multidimensional approximate entropy index evaluated on short-term HRV time series. Complexity 2018; 2018: 4953273. DOI: 10.1155/2018/4953273.
  8. Deka B, Deka D. Nonlinear analysis of heart rate variability signals in meditative state: a review and perspective. Biomed Eng Online 2023; 22(1): 35. DOI: 10.1186/s12938-023-01100-3.
  9. Lake DE, Richman JS, Griffin MP, Moorman JR. Sample entropy analysis of neonatal heart rate variability. J Physiol Regul Integr Comp Physiol 2002; 283(3): R789-R797. DOI: 10.1152/ajpregu.00069.2002.
  10. Chen Y, Yang H. A comparative analysis of alternative approaches for quantifying nonlinear dynamics in cardiovascular system. 2013 35th Annual Int Conf of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013: 2599-2602. DOI: 10.1109/EMBC.2013.6610072.
  11. Singh M, Singh B, Singh G. Optimal RR-interval data length for entropy based heart rate variability analysis. Int J Comput Appl 2015; 123(14): 39-42. DOI: 10.5120/ijca2015905667.
  12. Benzy VK, Jasmin EA, Koshy RC. Approximate entropy and wavelet entropy based depth of anesthesia monitoring. 2015 Int Conf on Control Communication & Computing India (ICCC) 2015: 371-374, DOI: 10.1109/ICCC.2015.7432923.
  13. Fan S-Z, Yeh J-R, Chen B-C. Comparison of EEG approximate entropy and complexity measures of depth of anaesthesia during inhalational general anaesthesia. J Med Biol Eng 2011; 31(5): 359-366. DOI: 10.5405/jmbe.820.
  14. Li P, Karmakar C, Yearwood J, Venkatesh S, Palaniswami M, Liu C. Detection of epileptic seizure based on entropy analysis of short-term EEG. PLOS ONE 2018; 13(3): e0193691. DOI: 10.1371/journal.pone.0193691.
  15. Kaur A, Verma K, Bhondekar AP, Shashvat K. Comparison of classification models using entropy based features from sub-bands of EEG. Traitement du Signal 2020; 37(2): 279-289. DOI: 10.18280/ts.370214.
  16. Gao X, Yan X, Gao P, Gao X, Zhang S. Automatic detection of epileptic seizure based on approximate entropy, recurrence quantification analysis and convolutional neural networks. Artif Intell Med 2020; 102: 101711. DOI: 10.1016/j.artmed.2019.101711.
  17. Natarajan K, Acharya UR, Alias F, et al. Nonlinear analysis of EEG signals at different mental states. BioMed Eng OnLine 2004; 3: 7. DOI: 10.1186/1475-925X-3-7.
  18. Burioka N, Miyata M, Cornélissen G, et al. Approximate entropy in the electroencephalogram during wake and sleep. Clin EEG Neurosci 2005; 36(1): 21-24. DOI: 10.1177/155005940503600106.
  19. Chuckravanen D. Approximate entropy as a measure of cognitive fatigue: An EEG pilot study. Int J Emerging Trends Sci Technol 2014; 1(7): 1036-1042.
  20. Ji N, Ma L, Dong H, Zhang X. EEG signals feature extraction based on DWT and EMD combined with approximate entropy. Brain Sci 2019; 9(8): 201. DOI: 10.3390/brainsci9080201.
  21. Schuster HG. Deterministic chaos. An introduction, 2nd ed. Weinheim, Germany: VCH Publishers; 1988. ISBN: 0-89573-611-X.
  22. Moon FC. Chaotic Vibrations: an introduction for applied scientists and engineers. Hoboken, New Jersey: John Wiley & Sons; 2004. ISBN: 0-471-8585-1.
  23. Manilo, LA, Nemirko AP. Approximation of the Kolmogorov entropy in the analysis of chaotic processes on finite samples [In Russian]. Proc 14th Russian Conf on Mathematical Methods for Pattern Recognition (MMPR-14) 2009: 405-407.
  24. Porta A, Baselli G, Liberati D, et al. Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol Cybern 1998; 78(1): 71-78. DOI: 10.1007/s004220050414.
  25. Nemirko AP, Manilo LA, Kalinichenko AN. Mathematical analysis of biomedical signals and data [In Russian]. Moscow: “Fizmatlit” Publisher; 2017. ISBN: 978-5-9221-1720-3.
  26. Pincus SM, Goldberger AL. Physiological time-series analysis: What does regularity quantify? Am J Physiol 1994; 266(4 Pt 2): H1643-H1656. DOI: 10.1152/ajpheart.1994.266.4.H1643.
  27. Manilo LA, Zozulya EP. Estimation of time series correlation dimension for the task of cardiac rhythm disturbances analysis [In Russian]. Biomedical Radioelectronics 2009; 11: 32-39.
  28. Duda RO, Hart PE, Stork DG. Pattern classification, Part 1. New York: Wiley; 2001. ISBN: 978-0-471-05669-0.
  29. Manilo LA, Volkova SS. Recognition of the deep anesthesia stage from parameters of the approximate entropy of EEG signal. Pattern Recogn Image Anal 2013; 23(1): 92-97. DOI: 10.1134/S1054661812040128.
  30. Tong S, Thakor NV. Quantitative EEG analysis methods and clinical applications. Norwood: Artech House; 2009. ISBN: 978-1-59693-204-3.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20