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THE EFFECT OF PERIODIC LONGITUDINAL
NONUNIFORMITY ON THE FORMATION OF
WAVEFRONTS FOR SELF PROPAGATING RADIATION
IN GRADIENT WAVEGUIDES

S. G. KrivosHLYKOV and S. N. YANCHENKO

Abstract—A quasimode representation has been introduced with the aim of analysing self-propagating
radiation in gradient waveguides periodically non-uniform in the longitudinal direction. The quasimodes
have been demonstrated to form, in the paraxial approximation, a complete set of orthogonal basis
functions at each point of the longitudinal axis. For radiation propagating in such waveguides effective
controllability of the wavefront has been established.

Information processing by means of integrated optics is of great current practical interest, due to
the latter’s operational speed, capacity and miniaturization capabilities. The ability to form wave
packets with a specified wavefront is rather important in this context. Provided the mode
composition of the radiation passing down an optical waveguide is given, the transformation
coefficients between various modes are normally introduced for a waveguide which is uniform in
the longitudinal (i.e. propagation) direction [1]. The goal of the present work is to investigate, in
the paraxial approximation, the effect of periodic longitudinal large-scale nonuniformities (T > 4,
/ being the wavelength, T the period of the nonuniformity) on the form of wavefronts self-
propagating in a gradient waveguide. In tackling this problem it is convenient to introduce a
quasimodal representation for the nonuniform, longitudinal, periodic gradient-wave guide. By this
we mean the solution of Maxwell’s equations satisfying all the boundary conditions, namely,

E*(xy, X5, 23 1) = E5(x,, X5, 2) exp {i(ot — fz)}

) (1)
H?(xy, X4, 2; t) = H3(x,, X3, z) exp{i(wt — fz)},

wherein the eigenvalue § is the propagation (quasi)-constant and E3, H are functions periodic in
z, with periodicity T. By making the substitution z —» z + T the quasimodes are seen to satisfy the
condition

E(xlrx27Z+T)=E_(x1,x27 exp{_IZ;T}

2
H(x,,x;,z+ T)=H(x,, x,, z) exp{ —ipT}, @

i.e. there is phase repetition over T equal to the periodicity of the longitudinal nonuniformity,
matching the mode-repetition distance z =2nN/f (f is the propagation constant). If the medium
is weakly nonuniform A|Vn|/n « 1, n = refractive index of the guide), Maxwell’s equations reduce
to the scalar Helmholtz equation [1]:
0*E 0°E O°E
T 4k (xy, x,,2)E=0, A3
ax1 a 2 6 2 ( 1 2 ) )
where {x,, x,, z} are Cartesian coordinates, E is one of the field components, and k = 27/4, is the
wave number in vacuum.
Substituting the quasimode field intensity (1) into (3), we obtain the equation satisfied by the
quasimodes:

0%E* 62E’ BZEZ

ox? 6x2

—215’ +[k2n (X1, X5, 2) — BPIE* = 0. 4)

The set of propagating quasimodes are determined by the boundary conditions. If there is
longitudinal nonuniformity the quasimodes reduce to the ordinary guide modes, with a similar
reduction for the corresponding dispersion relations. From a mathematical point of view the
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quasimodes of the present aperture are analogous, in the paraxial approximation, to the
quasienergetic states (QES) of quantum systems describable by Schroedinger equations with
time-periodic Hamiltonians [2, 3]. This analogy is easily established by considering that in the
paraxial approximation the Helmholtz equation (3) may be transformed into a nonstationary
Schroedinger equation, where the longitudinal coordinate ¢ replaces the time, and he1/k [4]:

ioy _ 1 (3% 62_4/) 1oy o
L (B ) o=y, ©

2 2
Oxi 0x3

where

£=Jzn51(z)dz; ne =n(0,0, 2)

0

WXy, Xy, 2) = ny2E(xy, x3, 2) GXP{_ik JZ no(z)dz}; (6)

0

& =f3ng ' (z)dz; and ny =n(0,0, z) is the refractive index along the z-axis. Hence, in view of (1)
and (6), in the paraxial approximation, quasimodes like the QES form a complete orthogonal set
at each point along the z-axis. This allows one to expand an arbitrary field in such a waveguide in
terms of a complete set of quasimodes at every point on the z-axis, and to reduce the problem to
investigating the quasimode properties. Because of their properties one may consider quasimodes
as modes in effect of a longitudinal uniform waveguide. Equation (5) may be solved by the usual
quantum mechanical methods, namely in terms of integrals of motion, coherent states, or by the
dynamical symmetry group method [5, 6]. As a concrete example let us consider a planar graded
index guide with a parabolic profile,

n(x, §) = nj(x, §) — *(E)x* = 2f ()x, ()

where w?(¢) is the gradient parameter and f(£), a function describing the bending of the guide
axis, is a periodic function of ¢ with period T, = T'. An explicit expression for the quasimode field
intensity may be obtained by solving the equation of motion for the classical oscillator:
E+o(@e=0; ?(E+T)=0?(). (8)
By Floquet’s theorem the solutions of Eq. (8) may be either stable or unstable. Stable solutions
have the form

s+ T)=e@) explixT'k};  e*(E+T)=e*(&)exp{—ixT'k}, 9)
1 T
where the star represents differentiation with respect to ¢; and x=?§f le|~2dt is a real
0
number.

Following [5, 7] we derive the following expression for the field intensity of a directed quasimode
within the parabolically graded longitudinally nonuniform waveguide:

*\n/2 z <
E(z)=ng W(%) (nln%k~1%¢) exp {ik J no(z)dz} exp {‘25 kng (x — :1)2}

0 &

x exp{in'nok(x —n) + ik jz B 03 — % w*n? + f(‘C)I’]] de }H,(\/E(lxl— ’7)>, (10)

0 no(t) &

where H, is the Hermite polynomial, and 7 is the real solution of the equation

i+ w*(&n = f(8). (11)

By choosing a periodic solution of (11) we easily find the dispersion relations for the propagation
(quasi) constants f:

B = k<no> — k{1 /noYy(n +1/2) — AB, (12)
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where

k{1/ng> fT'[l L, 1 J
Af=—"77~. — 72 ——?(Em? + f(e)y |dE,
P=—0F 373 (m* + f (e [dE
1 (T 1 (T
ned =—- ny(z)dz; 1/nd=—1| ng'(z)dz.
{no» Tjo ol(2) 1/ngp T_[OO()Z
The dispersion spectrum J, of (12) turns out to be enti discrete for guided quasimodes.
Radiation quasimodes corresponding to unstable solutions of (8),

e+ T)=e(Q)exp{—xT'k}; &)+ T")=er(¢) exp{xTk}, (14)

where ¢, ¢, are two linearly independent solutions of (8) satisfying ,&, —¢&,4, =1, y* >0, have
the following form:

1 3 )2 —1/4+iv z
E,, + (x,z)=n5 20, z>F<— - iv) exp{M}Gk 8—2> exp{ik f o dz}
2 4e,e, 3 0

X exp{in’nok(x —n)+ik J [% n'*ng — % w*n® + f(T)”I] dr T}D— 1/2 +iv<m_—’7)>,
n

0 0 £18,
(15)

where D_,,,,;, is the parabolic cylinder function, v is a real number and the vacuum state

ike; . . . .
0, z) = <k/2ne{/2 exp{zl n0x2}> (the prime on ¢, n denotes differentiation with respect to z).
1
For radiation quasimodes the dispersion spectrum changes to

B=klnod — k{1 /ngyyy — AB, (16)

where AP, as per (13), is continuous and doubly degenerate.

The continuous nature of (16) is due to the fact that, by (15), in the unstable region described
by (14) the medium through which radiation is propagating will assume waveguide properties, and
will radiate the light incident on it in all directions over the [x, z]-plane. It follows from (12), (13)
and (16) that the nature of the solutions is unaltered by periodic bending of the waveguide axis,
which only causes a shift Af in the quantity 5. The shift Af with respect to the propagation
constants ff, may be estimated by using (12). Thus, if the gradient parameter w(¢) is a function
which differs little from the constant w, representing the gradient parameter of a longitudinally
uniform wavelength, i.e. if

®?(€) = wi(1 +4h cos wé), (17)

where w =2n/T’, |4h| « 1, then as h — 0 the size of the quantum y is given by [7]:

2 —h?, o=2w(l+e), e—>0

="0  dod (18)

dw? — w?

If w is restricted to be nearly 2w,, i.e. if only first-order terms of h and ¢ are retained, the range
of variation of w associated with the stability region may be determined:

dw dn-ngy

1
Wy < 0 < 204(1 — |H]); —E<a<—|hl; h= (19)

20 2wia*
where dn, is the change induced in the refractive index n, along the waveguide axis, dw is the

amplitude of gradient parameter change, w(¢) = w, + dw cos wé, and a is the waveguide depth.
Hence the spectrum shift,

Aﬂm-__ﬂm_igm:%{q(m'*_%)[\/ 82_h2_1] (20)
0

is proportional to the quasimode number m (n, is assumed to be independent of &).
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If w is far from 2w, the spectral shift is determined by the following:

4]
o 2/ 4wl — w?

The shifts (20) and (21) have opposite signs. Af depends essentially on the parameter h, which is
essentially determined by the induced refractive index change dn, along the waveguide axis and is
limited by technical considerations. For example, in a waveguide formed in LiNbOj; the index on
the axis is n, = An+ n,~ 2.2, where An=2 x 102 is the index gradient and n,=n,=2.17 is the
refractive index on the optic axis of LINbO; having a depth of a=5 um, dny ~ 10~ %, the gradient

parameter w, X /2noAn/a =8 X 1072, so that h ~ 10™*. An increase of h(dn,) at constant ¢ means
that the lowest modes are more easily excited. We note that in the limit that ¢ = h, y vanishes,
which corresponds to the boundary between the stable and unstable regions of (8). In that case
the guided quasimodes become radiative, the spectrum remaining continuous. We may estimate
the angular spectral shift by using the prismatic method for the input/output radiation of the
waveguide:

A®, =0, — 06, =arcsin L arc sin ——. (22)
Moy kng,

Hence, when o is near 2w, and as ¢ — h, A®,, for the zeroth quasimode becomes A@, = 6" of
arc, while for m = 5, A®; = 1°, so that the angular separation of neighbouring modes is A®, ; = 10’
(the refractive index of the prism n, ~2.5; 1=0.63 um and A®, , =0, — 0,). Therefore, by
changing the periodicity of the graded-guide nonuniformity, one can control the spectrum of
propagation (quasi) constants, exciting thereby various groups of modes corresponding to an
effective longitudinally uniform waveguide, and allowing for the formation of various wavefronts
propagating down the graded guide. Note that any deviation from a parabolic index profile will
upset the equidistant spacing of the propagation (quasi) constants [12] and will generate an
inter-quasi mode dispersion df/dk, where k is the wave vector. Therefore, the form of the signal
transmitted by the optical waveguide appears to be controllable, a facility of practical interest in
fibre optics communication.
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