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1. Introduction 
Technological advances made possible micro-

processing of optical and diffractive devices of sub-
wavelength size. Such elements may find use in holo-
graphy, spectroscopy, interferometry, and optical data 
processing. 

The rigorous modeling of these devices calls for 
solving the basic electromagnetic Maxwell’s equations. 
If one needs to get a far-field solution, commonly used 
geometrical optics approximations become inadequate, 
which entails the necessity of developing numerical 
techniques for solving Maxwell’s equations. For a sub-
wavelength characteristic size of diffractive structures, 
one should use a vector model for analyzing diffraction 
processes [1]. The vector diffraction problem may be 
solved analytically for some periodic structures [2]. 
Hence, the vector diffraction by a periodic diffractive 
optical elements (DOEs) should be simulated using nu-
merical techniques. These numerical techniques may 
then be used in working out recommendations how to 
improve the parameters of fabricated devices or to op-
timize the process of developing new ones. 

The majority of numerical diffraction models aimed 
at analyzing conducting electromagnetic scatters may be 
divided into differential [3], integral, and variational. 

With integral methods, the electromagnetic field at a 
space point is found as a combination of contributions 
to this point from source fields, taken over space or sur-
face. Popularity of the integral methods is due to their 
ability to deal with unlimited field problems since the 
Zommerfeld radiation condition holds unconditionally 
in the problem statement. Furthermore, the integral 
methods require that only the surface field of a diffrac-
tion element be known, and not the total spatial field, 
thus minimizing the number of unknowns. A disadvan-
tage of the integral methods is that they lead to fully 
completed matrixes and, hence, require large bulk of 
computer memory and great computational efforts. Note 
that volume integral methods are also able to simulate 
diffraction by nonhomogeneous DOEs. 

Variational methods applied to solving limit-volume 
tasks find the solution to Helmholtz’s equation by 
minimizing the functional relation, as opposed to di-
rectly solving differential equations. If the finite ele-
ment method is stated using the Ritz- method, it is rep-
resented by a variational approximation. Its statement is 
simple and apply to an arbitrary homogeneous medium. 
However, it involves no Zommerfeld radiation condi-
tion. It is common practice to use an absorbing bound-
ary condition which is also not free from disadvantages. 

There is also a hybrid method [1] which implies the 
application of the finite element method (FEM) to the 
internal DOE region where nonhomogeneities may oc-
cur, and the application of the boundary element 

method to a DOE-external region, with the radiation 
conditions to be fulfilled. The methods meet on the in-
terface, thus satisfying the field continuity condition. 
This approximation represents a faithful boundary con-
dition since values of the normal derivative of reflected 
field are given exactly. A disadvantage of the method 
lies in the nondiagonal character of the matrix system, 
which leads to a completely filled submatrix resulting in 
a greater memory resources for data storage and great 
computational efforts. 

2. Statement of the problem 
It has been known that for a nonhomogeneous, 

slow-varying (as compared with the wavelength) me-
dium the set of Maxwell’s equations may be reduced to 
the Helmholtz equation for each component of the elec-
tric and magnetic vectors [4]. 

The boundary Г envelops the space region with scat-
tering microstructure, and a free space domain . The in-
ternal domain is designated I, the internal domain I with 
its boundary Г is designated Ω. The external domain Ψ 
with respect to Г is supposed to be unlimited free space. 

The element (diffractive device, DOE) stretches in-
finitely along the z axis, whereas its cross-section is 
found in the xy. So, the resulting solution is z-
independent, but depends only on the x- and y-variables. 
Any such 2D task may be expanded into transverse 
magnetic TM-polarization and transverse electric TE-
polarization. 

Let us consider TM-and TE-polarization independ-
ently, which enables each projection of the electromag-
netic field to be described by one scalar function u(x, y). 
For TM-polarization u(x, y) is the total electric field 
Ez(x, y), and for TE-polarization u(x, y) is the total mag-
netic field Hz(x, y). In either case, the total field u(x, y) 
is represented by the sum of scattered field usc(x,y) and 
incident field uinc(x, y). 

The total field uΩ(x, y) in Ω should satisfy the Helm-
holtz equation: 
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where p=µr and q=εr for TM-polarization, and p=εr and 
q=µr for TE-polarization. The constants µr and εr are 
defined by the ratio of magnetic permeability and elec-
tric permittivity of a uniform medium to the analogous 
free space parameters, i.e. µr=µ/µ0 and εr=εr/ε0, k0 is the 
wavenumber in free space. 

3. The Ritz method 
To solve the problem in Eq. (1) consider the func-

tional: 
J(u)=(Lu,u) – 2(f,u) = ( )( )∫∫

Ω

−∆− 22uqpkuu dxdy. (2)  

Using the first Green formula 
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∫∫
Ω

∆QP dΩ = ∫
Γ

′nd
dQP dl – ∫∫

Ω

∇∇ QP dΩ, (3) 

where Ω – is the domain of the plane x, y; Г – is its 
boundary went around in positive direction; 

n′d
dQ  – is the 

derivative in the direction of the external normal to the 
curve Г, instead of Eq. (2) we get: 

J(u)= ( )∫∫
Ω

−∇∇ 22uqpkuu dxdy – ∫
Γ

′nd
duu dl. (4) 

 
Since the incident field uinc(x,y) is known Eq. 

(1) should be resolved relative to the scattered field 
usc(x,y). Instead of Eq. (4) for the sum of scattered and 
incident fields we get the following functional: 
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We seek the extremum of the functional J: 
δJ[usc

Ω(x,y)] = 0. (6) 
Reduce Eq. (6) to a set of linear algebraic equations 

using the following scheme. Cover the domain Ω by a 
triangle network, with a linear polynomial constructed 
in each triangle. For a unique definition of the polyno-
mials it will suffice to specify their values at the trian-
gles’ vertices. Thus, the system of functions ωk(x, y) 
will form the basis. The ωk(x, y) function is represented 
geometrically as a pyramid with the center at point Сk 
(Fig. 1).  

 
Fig. 1. Geometrical representation of the ωk(x, y) 

function 

The domain Ω will be represented by 2( N –1)2 tri-
angular elements, while the domain Г will be repre-
sented by M = 4(N – 1) linear segments, where N – is 
the number of nodes of the network. The field u is rep-
resented via this basis as follows 

u (x, y) = ∑
=

Ω
N

k
kk yxu

1
),(ω . (7) 

Substituting the expansion in Eq. (7) into the func-
tional in Eq. (5), making the derivatives ∂J(u)/∂uk  
(k=1, …, N) be equal to zero and separating the total 
field into the sum of incident and scattered fields, we 
get the following set of linear algebraic equations: 

A(usc + uinc) – 
2
1 B(vsc + vinc) = 0. (8) 

The elements of matrix A are derived from: 

,),(),(),(
),(),(

),(),(
),(

1

2
0

,

Ω
⎟⎟
⎟

⎠

⎞
−

⎥
⎥
⎦

⎤

∂

∂

∂
∂

+

⎜⎜
⎜

⎝

⎛

⎢
⎢
⎣

⎡
+

∂

∂

∂
∂

=

ΩΩ
ΩΩ

Ω

ΩΩ

∫∫

dyxyxyxqk
y

yx
y

yx

x
yx

x
yx

yxp
a

jk
jk

jk
jk

k

ωω
ωω

ωω

  (9) 

k, j = 1, ..., N. 
The matrix В elements are derived from: 

bm,s = ∫
Γ

ΓΓ
smωω dl, m, s = 1, ..., M. (10) 

Then, for Eq. (8) we get: 
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In Eq. (11), the between-field relation coefficients 
only in the internal nodes are represented by the subma-
trix (N-M)×(N-M) [AI,I]. . The between-field relation 
coefficients only on the boundary nodes are given by 
the submatrix M×M [AГ,Г], while the between-field rela-
tions on internal and boundary nodes is given by the 
submatrix (N–M)×M [AГ,I] and the transposed matrix 
[AI,Г]. The interaction between derivatives of the field 
variables on the boundary nodes is represented by the 
submatrix M×M [B]. 

In the set, the number of equations is less than the 
number of unknowns, thus making it necessary to spec-
ify either the normal field derivative on the interface or 
the field value. In this paper we develop a boundary 
element method (BEM) that defines the relation be-
tween the fields and their derivatives on the boundary. 

As an alternative, one may determine the field in I, 
using integration machinery. Analysis of homogeneous 
DOEs using the boundary integral technique applied to 
its natural boundary is made in Ref. [1]. On the other 



 42 

hand, an imaginary boundary can reduce the number of 
linear segments involved in the boundary description, 
but simultaneously results in the generation of an arbi-
trary nonhomogeneous scatterer that denies analyzing 
by means of the boundary integral method. Note that al-
though the volume integration techniques allow the 
nonhomogeneous scatterers to be analyzed, the FEM 
requires less computational efforts. 

4. Results of numerical simulation 
The above-described algorithm was applied for 

computation of the diffraction light field from a desired-
shape DOE. 

Functions cos(k0nx) and sin(k0nx) are known to be 
solutions of Eq. (1), where k0 is the wavevector of free 
space and n is the refractive index of medium. 

For the Dirichlet problem (usc = 0) attacked by the 
Gauss method, the linear set of algebraic equations is 
given by 
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or 

[ ][ ]III uA ,  = – [ ][ ]ΓΓ uA I, . (13) 

Assuming Γu  being equal to the values the sine or 
cosine function take on the boundary Г, we should get 

Iu  being equal to the values the sine or cosine func-
tions take in the internal domain I. In all cases, a plane 
incident wave moves from the left. Three sets of com-
putation were conducted with various values of the 
sampling parameter N (the number of break-down 
points). The size of the estimated domain and the wave-
length were, respectively, S = 4.225 µm and λ= 1.3 µm. 
Throughout the entire estimated domain, we assumed 
the magnetic permeability µ = 1, the dielectric constant 
ε = 1 and the refractive index n = 1. 

In the first set, the real part of Γu  was described by 
the function cos(k0nx), with its argument belonging to 
the boundary Г, and complex part was taken to equal 
zero. The function cos(k0nx) is also a solution of the 
task with the above boundary conditions. Figure 2 
shows the intensity distribution for the field Ωu  and the 
intensity distribution over the cross-section y = 1.2 µm. 
The sampling step is N = 75x75. In terms of intensity δI, 
the root-mean-square deviation of the generated field 
from the field cos(k0nx) was 7 %. In terms of amplitude, 
the r.m.s. deviation was 4 %. 

In the second case, the real part of Γu  was de-
scribed by the sin(k0nx) function, with its argument be-
longing to the boundary Г and complex part being 
equalled to zero. The solution of the problem with the 
above-described boundary conditions is the sin(k0nx) 
function. In the third case, the propagation of a plane 
wave was computed. The real part Γu  was described by 
the cos(k0nx) function, while the complex part was de-
scribed by the sin(k0nx) function, with their argument 

belonging to the boundary Г. The solution of the prob-
lem with such boundary conditions is given by the 
exp(ik0nx) function. 

 
Fig. 2. Intensity distribution for the Dirichlet problem at 

inc
Γu  equal to cos(k0nx) 

The plot in Fig. 3 shows how the root-mean-square 
deviation of intensity depends on the Z= N  parameter 
for the size of the domain under calculation S =4.225 
µm and the wavelength 1.3 µm. 

 
Fig. 3. Root-mean-square intensity deviation δI vs the 

Z= N  parameter 

For the Neumann task (vsc = 0) solved by use of the 
Gauss method, the sets of equations are given by 
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In all situations, a plane incident wave travels from 
the left. 

We considered how a TM-polarized wave of wave-
length 1.3 µm traveled in a homogeneous medium of 
lens with permittivity µ = 1 and dielectric permeability ε 
= 1. 

Figure 4 depicts the result of numerical simulation 
for a lens of radius R = 2 µm (thickness 2 µm), aperture 
4 µm, focal length 4 µm. The refractive index is n = 1.5 
and focal length is f = 4 µm. Size of the domain to be 
calculated is S = 7.7 x 7.7 µm. The lens is 0.6 µm apart 
from the left edge. The sampling parameter is N = 115 x 
115. The boundary conditions were given by the field 
normal derivative on the boundary, equal to the deriva-
tive of the exp(ik0x) function, i. e. the field derivatives 
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are not equal to zero on the left and right boundary and 
are equal to zero on the top and bottom boundary. Such 
boundary conditions correspond to the propagation of 
the field from left to right along top and bottom bound-
ary. Intensity distributions for lenses of thickness 1.8 
µm and 1.7 µm, respectively, are depicted in Figs. 5 and 
6. 

 
Fig. 4. Intensity distribution (inverted)  

for the Neumann task at n = 1.5. 

  
Fig. 5. Intensity distribution (inverted)  

for a lens of thickness 1.8 µm. 

From Fig. 5, the lens is seen to bend the wavefront 
making it spherical. The field solution is constructed so 
that that the derivatives on the top and bottom bounda-
ries are equal to zero and diffraction lines are perpen-
dicular to these boundaries. A maximum intensity is ob-
served in the proposed focus. 

5. Conclusion 
For analysis of vector diffraction by microstructures, 

the Ritz method has been developed. The effect of fo-
cusing of a plane wave of wavelength 1.3 µm by a lens 
of radius 2 µm, aperture 2 µm and focal length 4 µm 

has been clearly demonstrated. The algorithms devel-
oped make it possible to derive the approximate solu-
tion of desired accuracy not at the cost of an increases 
network step, but through constructing of more accurate 
approximations of the initial problem. as continuation of 
the work, the analysis of light propagation and diffrac-
tion in free space may be conducted. 

 
Fig. 6. Intensity distribution  

for a lens of thickness 1.7 µm 

6. Acknowledgment 
This work was supported by the Russian Foundation 

for Basis Research (grants 98-01-00894, 99-01-39012). 

7. References 
1. Mirotznik M.S., Prather D.W., Mait J.N. A hybrid 

finite element – boundary element method for the 
analysis of diffractive elements.//Journal Of Mod-
ern Optics.-1996.-v.43.-no.7.-p.1309. 

2. B. Lichtenberg, Gallagher N.C. Numerical model-
ing of diffractive devices using the finite element 
method.//Optical Engineering. -Nov.1994.-v.33.-
no.11.-p.3518. 

3. D. L. Golovashkin, A. A. Degtyarev, V. A. Soifer, 
Modeling the waveguide optical radiation propa-
gation using the electromagnetic theory, Journal of 
Computer Optics, 1997, No. 17, p. 5. 

4. S. Solimeno, B. Crosiniani, P. Di Porto, diffraction 
and wavegiude propagation of optical radiation, 
Moscow, Mir Publishers, 1984, p. 13, 256 pages. 

5. G. I. Marchuk, Methods of computational mathe-
matics, Moscow, Mir Publishers, 1980, p. 32, 
p.64. 

 

 



Modeling the light diffraction by micro-optics elements using the finite element 
method 

D.V. Nesterenko, V.V. Kotlyar, Y.Wang1 
Image Processing Systems Institute of Russian Academy of Sciences, Russia 

1Beijing Institute of Technology, Beijing 100081, China 
 

Abstract  

Technological advances has made it possible to perform microprocessing of optical and diffrac-
tive devices of subwavelength size. Such elements can be applied in holography, spectroscopy, in-
terferometry, and optical data processing. 

Citation: Nesterenko DV, Kotlyar VV, Wang Y. Modeling the light diffraction by micro-optics 
elements using the finite element method. Computer Optics 1999; 19: 40 - 43. 

References  

[1] Mirotznik M.S., Prather D.W., Mait J.N. A hybrid finite element – boundary element method for the analysis of diffractive ele-
ments.//Journal Of Modern Optics.-1996.-v.43.-no.7.-p.1309. 

[2] B. Lichtenberg, Gallagher N.C. Numerical modeling of diffractive devices using the finite element method.//Optical Engineering. 
-Nov.1994.-v.33.-no.11.-p.3518. 

[3] D. L. Golovashkin, A. A. Degtyarev, V. A. Soifer, Modeling the waveguide optical radiation propagation using the electromag-
netic theory, Journal of Computer Optics, 1997, No. 17, p. 5. 

[4] S. Solimeno, B. Crosiniani, P. Di Porto, diffraction and wavegiude propagation of optical radiation, Moscow, Mir Publishers, 
1984, p. 13, 256 pages. 

[5] G. I. Marchuk, Methods of computational mathematics, Moscow, Mir Publishers, 1980, p. 32, p.64. 


