ПРИБЛИЖЕНИЕ СФЕРОИДАЛЬНЫХ ВОЛНОВЫХ ФУНКЦИЙ КОНЕЧНЫМИ РЯДАМИ

Хонина С.Н. Институт систем обработки изображений РАН e-mail: khonina@smr.ru

Аннотация

Рассматривается приближение вытянутых сфероидальных функций конечными рядами и предлагается метод вычисления коэффициентов таких рядов. Приводится численный анализ выполнения свойства инвариантности вытянутых сфероидальных функций нулевого порядка к интегральному преобразованию с sinc-ядром на симметричном ограниченном интервале.

1. Введение

Сфероидальные функции (СФ) обязаны своим появлением в математической физике разделению переменных в уравнении Гельмгольца в координатах вытянутого и сплюснутого сфероидов. До 1975 года основной областью применения СФ были задачи дифракции на вытянутом и сплюснутом сфероидах, тесно связанные с разделением переменных. Вторая область применения СФ появилась, когда была подробно проанализирована их связь с преобразованием Фурье в конечных пределах и установлено свойство двойной ортогональности вытянутых радиальных СФ. Именно благодаря этим свойствам СФ стали широко использоваться в таких областях, как теория синтеза антенн и теория изображений.

СФ представляют собой полный набор функций с ограниченной спектральной полосой, которые ортогональны как на данном конечном интервале, так и на бесконечном интервале [1]. Кроме того, СФ являются собственными нулевого порядка функциями преобразования Фурье на ограниченном интервале и интегрального преобразования с sincядром на симметричном ограниченном интервале [2]. При этом собственные числа интегрального преобразования определяют количество энергии соответствующей собственной функции, концентрирующейся на данном ограниченном интервале. Собственные числа близкие к единице показывают, что данная СФ имеет за пределами данного интервала малую долю энергии.

С помощью СФ можно формировать сигналы и изображения, которые одновременно обеспечивают наилучшую концентрацию энергии по времени и спектральной частоте [3]. Данное свойство может эффективно использоваться в системах передачи информации [4]. Аналогичными свойствами обладают вытянутые СФ двух переменных, Фурьеспектр которых ограничен кругом. Они являются собственными функциями интегрального уравнения с ядром пропорциональным произведению Бессельфункции на квадратный корень из аргумента [5]. Такое интегральное уравнение также описывает моды в лазерном интерферометре с конфокальными сферическими зеркалами круглого сечения.

Вытянутые СФ обладают также свойством самовоспроизведения при распространении в пространстве, то есть они являются собственными функциями оператора дифракции на некотором расстоянии от ограниченной апертуры [6]. Кроме того, дифракционная картина вытянутых СФ в присутствии апертуры и без нее одинакова с точностью до константы. Метод собственных функций оптических систем с гауссовыми ограничивающими апертурами был рассмотрен при интерпретации механизмов преобразования полей оптическими Фурьесистемами и системами, формирующими изображение [7].

В данной работе исследуется свойство инвариантности вытянутых СФ к интегральному преобразованию с sinc-ядром на симметричном ограниченном интервале. Для приближенного расчета СФ используется их аппроксимация конечными рядами функций Лежандра и сферических функций Бесселя [8]. Для вычисления коэффициентов такого разложения в данной работе предложен простой алгоритм.

2. Вытянутые сфероидальные функции

Сфероидальные координат представляют собой вращательно-симметричные координаты и могут быть получены вращением вокруг осей симметрии плоской эллиптической системы координат, состоящей из взаимно ортогональных софокусных эллипсов и гипербол. Вытянутые сфероидальные координаты возникают при вращении вокруг большой оси эллипсов, координатными поверхностями служат софокусные вытянутые эллипсоиды вращения и двуполостные гиперболоиды. При этом фокусы плоской эллиптической системы координат остаются на месте. Вытянутые сфероидальные координаты ξ , η , φ связаны с декартовыми координатами точки x, y, z следующими формулами:

$$x = \frac{d}{2}((\xi^{2} - 1)(1 - \eta^{2}))^{1/2} \cos \varphi = \rho \cos \varphi$$

$$y = \frac{d}{2}((\xi^{2} - 1)(1 - \eta^{2}))^{1/2} \sin \varphi = \rho \sin \varphi$$
(1)

$$z = \frac{d}{2}\xi\eta$$

где d – расстояние между фокусами, $\xi \in (1, \infty), \quad \eta \in (-1, 1), \quad \varphi \in [0, 2\pi].$

Волновое уравнение в вытянутых сфероидальных координатах:

$$\nabla^{2} \Phi + k^{2} \Phi = \frac{\partial}{\partial \xi} \left(\left(\xi^{2} - 1 \right) \frac{\partial \Phi}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left(\left(1 - \eta^{2} \right) \frac{\partial \Phi}{\partial \eta} \right) + \frac{\xi^{2} - \eta^{2}}{\left(\xi^{2} - 1 \right) \left(1 - \eta^{2} \right)} \frac{\partial^{2} \Phi}{\partial \varphi^{2}} + , \quad (2)$$
$$+ c^{2} \left(\xi^{2} - \eta^{2} \right) \Phi = 0$$

где c = kd/4, k – волновое число.

Положим, что [8] $\Phi = R_{mn}(c, \xi) S_{mn}(c, n) \exp(im\varphi)$.

Тогда радиальное решение
$$R_{mn}(c,\xi)$$
 и угловое

(3)

решение $S_{mn}(c, \eta)$ будут удовлетворять дифференциальным уравнениям:

$$\frac{d}{d\xi} \left[(\xi^{2} - 1) \frac{d}{d\xi} R_{mn}(c,\xi) \right] - \left(\chi_{mn} - c^{2}\xi^{2} + \frac{m^{2}}{\xi^{2} - 1} \right) R_{mn}(c,\xi) = 0, \quad (4)$$

$$\frac{d}{d\eta} \left[(1 - \eta^{2}) \frac{d}{d\eta} S_{mn}(c,\eta) \right] + \left(\chi_{mn} - c^{2}\eta^{2} - \frac{m^{2}}{1 - \eta^{2}} \right) S_{mn}(c,\eta) = 0, \quad (5)$$

где χ_{mn} – постоянные разделения.

В данной работе рассматриваются вытянутые угловые и радиальные функции первого рода, имеющие вид:

$$R_{mn}^{(1)}(c,\xi) = \left(\sum_{r=0,1}^{\infty} \frac{(2m+r)!}{r!} d_r^{mn}(c)\right)^{-1} \times \left(\frac{\xi^2 - 1}{\xi^2}\right)^{\frac{m}{2}} \sum_{r=0,1}^{\infty} i^{r+m-n} \frac{(2m+r)!}{r!} d_r^{mn}(c) j_n(c\xi)$$

$$S_{mn}^{(1)}(c,\eta) = \sum_{r=0,1}^{\infty} d_r^{mn}(c) P_{m+r}^m(\eta), \qquad (7)$$

где $j_n(x)$ – сферическая функция Бесселя, $P_n^m(x)$ – присоединенная функция Лежандра первого рода, суммирование выполняется либо по четным, либо по нечетным значениям r в соответствии с четностью n-m.

Для коэффициентов в (6), (7) выполняются следующие рекуррентные соотношения [8]:

$$\begin{aligned} &\alpha_r d_{r+2}^{mn}(c) + (\beta_r - \chi_{mn})d_r^{mn}(c) + \gamma_r d_{r-2}^{mn}(c) = 0, \\ &d_{-2}^{mn}(c) = d_{-1}^{mn}(c) = 0, \\ &\alpha_r = \frac{(2m+r+2)(2m+r+1)}{(2m+2r+3)(2m+2r+5)}c^2, \\ &\beta_r = (m+r)(m+r+1) + \\ &+ \frac{2(m+r)(m+r+1) - 2m^2 - 1}{(2m+2r-1)(2m+2r+3)}c^2, \\ &\gamma_r = \frac{r(r-1)}{(2m+2r-3)(2m+2r-1)}c^2. \end{aligned}$$
(8)

Выражения (8) определяют коэффициенты $d_r^{mn}(c)$ с точностью до множителя, который задается нормировкой вытянутых СФ.

Для вытянутых СФ нулевого порядка выполняется уравнение вида [9]:

$$\int_{-1}^{1} \frac{\sin(c(x-y))}{\pi(x-y)} \psi_n(y) dy = \lambda_n \psi_n(x) , \qquad (9)$$

где λ_n - собственные числа, $\psi_n(x) = R_{0n}(c,x)$, либо $\psi_n(x) = S_{0n}(c,x)$. В [9] также приведены приближенные формулы вычисления собственных чисел λ_n и χ_n :

для *n* фиксированного и *с* малого:

$$\chi_{n} = n(n+1) + \frac{1}{2} \left[1 + \frac{1}{(2n-1)(2n+3)} \right] c^{2} + O(c^{4}),$$

$$\lambda_{n} = \frac{2}{\pi} \left[\frac{2^{2n}(n!)^{2}}{(2n)!(2n+1)!} \right]^{2} c^{2n+1} \times$$
(10)
$$\times \left[1 - \frac{(2n+1)}{(2n-1)^{2}(2n+3)^{2}} c^{2} + O(c^{4}) \right];$$

$$\chi_{n} = c^{2} + 2bc + \frac{b^{2} - 1}{2} - \frac{b^{2} - b}{8c} + O\left(\frac{1}{c^{2}}\right),$$

$$\lambda_{n} = \frac{1}{1 + \exp(\pi b)},$$

$$r_{\text{T}} = b = \frac{\frac{\pi}{2} n - c + \frac{\pi}{4}}{\frac{\gamma}{2} + 2\ln 2 + \frac{1}{2}\ln c}, \quad \gamma = 0.5772156649... - \text{по-}$$

стоянная Эйлера-Машерони.

3. Алгоритм вычисления коэффициентов

Обычно предлагаемые [8,10] способы решения системы (8) основаны на выражении:

$$\frac{d_r^{mn}(c)}{d_{r+2}^{mn}(c)} = \frac{-\alpha_r}{\beta_r - \chi_{mn} + \gamma_r \frac{d_{r-2}^{mn}(c)}{d_r^{mn}(c)}},$$
(12)

в результате последовательного применения которого получается конечная цепная дробь.

Однако этот процесс приводит к цели, только если известны собственные значения $\chi_{mn}(c)$. Действительно, для произвольных χ , асимптотическое поведение коэффициентов при $r \to \infty$ [10]:

$$\alpha_r = \frac{c^2}{4} + O\left(\frac{1}{r}\right),$$

$$\beta_r = r^2 + O(r),$$

$$\gamma_r = \frac{c^2}{4} + O\left(\frac{1}{r}\right),$$

и отношение коэффициентов $\frac{d_r^{mn}(c)}{d_{r+2}^{mn}(c)}$, получен-

ное с помощью (12), убывает как $\frac{c^2}{4r^2}$, ряды (6) и

(7) расходятся. Только при специальном выборе χ можно скомпенсировать рост знаменателя в правой части (12) и сделать так, чтобы отношение $d_{-}^{mn}(c) = 4r^2$

$$\frac{d_r}{d_{r+2}}$$
 (c) возрастало как $\frac{4r^2}{c^2}$

Таким образом, для численного расчета вытянутых СФ через ряды (6), (7) нужно знать точное значение $\chi_{mn}(c)$, что предполагает трудоемкую процедуру уточнения известных асимптотик. Практика показала, что даже значения $\chi_{mn}(c)$, приведенные в [9] с точностью до 8-ой значащей цифры, ведут к расходимости ряда (7).

В связи с описанными трудностями в данной работе предлагается использовать следующий алгоритм вычисления коэффициентов $d_r^{mn}(c)$.

Будем решать систему (8) не от «начала», а с «конца»:

$$\frac{d_r^{mn}(c)}{d_{r-2}^{mn}(c)} = \frac{-\gamma_r}{\beta_r - \chi_{mn} + \alpha_r \frac{d_{r+2}^{mn}(c)}{d_r^{mn}(c)}}.$$
 (13)

Предположим, что ряд (7) можно оборвать на Nом члене. Для этого ряд должен сходиться и $\frac{d_{N+2}^{mn}(c)}{cm}$ должно быть достаточно мало. Для вы-

 $d_N^{mn}(c)$ должно облъ достаточно мало. Для вы-

полнения условия сходимости ряда можно положить, что (при $r \to \infty$)

$$\frac{d_{r+2}{}^{mn}(c)}{d_r{}^{mn}(c)} \sim \frac{c^2}{4r^2}.$$
 (14)

Тогда ряд можно обрывать при $N = \frac{c}{2\varepsilon}$, где ε -

некоторое заданное число меньше единицы (чем оно меньше, тем длиннее ряд). И коэффициенты вычисляются в обратном порядке (13), начиная с

 $\frac{d_{N+2}^{mn}(c)}{d_N^{mn}(c)} = \frac{c^2}{4N^2} \,.$

4. Численные результаты

Так как для приближения СФ конечными рядами важно знать точное значение $\chi_{mn}(c)$, оценим точность формул (10)-(11). Понятно, что формула (10) будет давать хорошие результаты при $c \le 1$. На рис.1 показано распределение собственных чисел λ_n и χ_n для $n = \overline{0,20}$ при c=1. Вертикальные штрихи соответствуют точным значениям [9], а значения на кривой получены по формуле (10).

Для c>3 можно пользоваться формулой (11), ошибка в этом случае не превышает 10% и уменьшается с ростом *с*. Для алгоритма (13)-(14) вычисления коэффициентов ряда (7) такой точности оказывается достаточно. На рис. 2 показано сравнение точных [9] и вычисленных по (11) собственных чисел λ_n и χ_n для $n=\overline{0,20}$ при c=15. На рис. 26 хорошо видно характерное распределение $\lambda_n(c)$: для $n \leq \frac{2c}{\pi}$

(*с* - фиксированное) собственные числа равны или близки к единице, затем с ростом *n* происходит быстрый спад до нуля [1].

Рис. 1. Сравнение табличных значений [9] (показаны вертикальными штрихами) и рассчитанных по (10) (показаны сплошной линией) собственных чисел СФ нулевого порядка χ_n (а) и λ_n (б) для $n = \overline{0,20}$ при c=1.

Рис.2. Сравнение табличных значений [9] (показаны вертикальными штрихами) и рассчитанных по (11) (показаны сплошной линией) собственных чисел СФ нулевого порядка χ_n (а) и λ_n (б) для $n = \overline{0,20}$ при c = 15.

Для оценки точности предложенного алгоритма вычисления коэффициентов ряда в приближении вытянутых СФ было проведено сравнение полученных результатов с известными.

В работе [11] приведены табличные значения рассматриваемых коэффициентов для m=0, $n=\overline{0,3}$, $r=\overline{0,15}$, $c=\overline{0,5}$. Чтобы расширить диапазон изменения параметра *с* можно воспользоваться приведенным там же разложением в степенные ряды:

$$\frac{d_{n-m\pm Q}^{mn}(c)}{d_{n-m}^{mn}(c)} \approx \sum_{q=Q}^{Q+K} \mu_{Q,q}^{mn} \cdot c^q , \qquad (15)$$

значения $\mu_{Q,q}^{mn}$ даны для $m = \overline{0,9}$, $n = \overline{0,9}$, Q = 2,4,6, K = 6.

В Таблице 1 приведены результаты сравнения коэффициентов $d_r^{03}(c)$, рассчитанных предлагаемым в данной работе методом (13)-(14) с табличными [11] и вычисленными по (15). Параметр δ_c , приведенный в последней строке Таблице 1 соответствует среднеквадратичному отклонению рассчитанных коэффициентов от точно известных.

Видно, что предлагаемый метод (13)-(14) позволяет вычислять коэффициенты $d_r^{mn}(c)$ очень точно (погрешность $\delta_c < 10^{-6}$) практически не зависимо от параметра *c*. В то время как приближение по формуле (15) дает хорошие результаты только при небольших значениях $c \le 5$.

	<i>c=2</i>			<i>c</i> =5			<i>c</i> =7	
	(13)-(14)	(15)	[11]	(13)-(14)	(15)	[11]	(13)-(14)	(15)
d_1^{03}	0.0706907	0.0707347	0.0706910	0.4470172	0.4567361	0.4470179	0.9327397	0.7008349
d_{3}^{03}	1	1	1	1	1	1	1	1
d_{5}^{03}	-0.070965	-0.070951	-0.070965	-0.526796	-0.517587	-0.526797	-1.50727	-1.42605
d_{7}^{03}	0.0018993	0.0018880	0.0018993	0.0933217	0.0746483	0.0933222	0.5688822	0.2907107
d_9^{03}	$-2.754 \cdot 10^{-5}$	-2.727·10 ⁻⁵	-2.754·10 ⁻⁵	-8.712·10 ⁻³	-6.659·10 ⁻³	-8.712·10 ⁻³	-0.108032	-0.050142
d_{11}^{03}	2.533·10 ⁻⁷	-	2.533.10-7	5.101.10-4	-	5.101.10-4	0.0126648	-
d_{13}^{03}	-1.618·10 ⁻ 9	-	-	-2.063.10-5	-	-2.063.10-5	-1.017·10 ⁻³	-
d_{15}^{03}	$7.615 \cdot 10^{-12}$	-	-	6.125·10 ⁻⁷	-	6.121·10 ⁻⁷	5.981·10 ⁻⁵	-
d_{17}^{03}	-2.75.10 ⁻¹⁴	-	-	-1.395.10-8	-	-	-2.689·10 ⁻⁶	-
		-	-		-	-		-
δ_c	$6.7 \cdot 10^{-7}$	$6.15 \cdot 10^{-5}$		$7.77 \cdot 10^{-7}$	0.0193		0.1	605

Таблица 1. Сравнение коэффициентов $d_r^{03}(c)$, рассчитанных предлагаемым в данной работе методом (13)-(14) с табличными [11] и вычисленными по (15).

На рис. З приведены графики распределения коэффициентов $d_r^{00}(1)$ (рис. За) и $d_r^{03}(1)$ (рис. Зб) для c=1, $r=\overline{0,10}$. Видно, что при малых значениях параметра c коэффициент $d_n^{0n}(c)$ значительно превалирует над другими.

Рис. 3. Графики распределения коэффициентов (a) $d_r^{00}(1)$ и (б) $d_r^{03}(1)$ для c=1.

На рис. 4 приведены графики распределения коэффициентов $d_r^{00}(4)$ (рис. 4а) и $d_r^{03}(4)$ (рис. 4б) для c=4, $r=\overline{0,40}$. Видно, что с ростом параметра cколичество ненулевых коэффициентов становится все больше, а при $c \ge \pi n/2$ $d_n^{0n}(c)$ перестает быть максимальным (в этом случае собственные числа $\lambda_n(c)$ приближаются к единице).

Судить о точности представления СФ конечными рядами (6)-(7) длины N с коэффициентами (13)-(14) можно по выполнению одного из основных свойств СФ (9). В Таблице 2 приведены значения среднеквадратичного отклонения:

$$\delta_{S} = \sqrt{\frac{\int_{-1}^{1} [\psi_{n}(x) - \tilde{\psi}_{n}(x)]^{2} dx}{\int_{-1}^{1} \psi_{n}^{2}(x) dx}},$$
(16)

$$\widetilde{\psi}_{n}(x) = \frac{1}{\lambda_{n}} \int_{-1}^{1} \frac{\sin(c(x-y))}{\pi(x-y)} \psi_{n}(y) dy$$

для вытянутых угловых СФ нулевого порядка, представленных конечными рядами (7) с использованием точных и рассчитанных коэффициентов $d_r^{0n}(c)$.

б)

С	n=0		<i>n</i> =1		<i>n</i> =2		<i>n</i> =3		<i>n</i> =4	<i>n</i> =5
	(13)-(14)	[11]	(13)-(14)	[11]	(13)-(14)	[11]	(13)-(14)	[11]	(13)-(14)	(13)-(14)
1	$4.4 \cdot 10^{-6}$	$4.6 \cdot 10^{-6}$	$2.9 \cdot 10^{-6}$	$2.8 \cdot 10^{-6}$	0.7667	0.7663	-	-	-	-
2	5.7·10 ⁻⁵	5.5·10 ⁻⁵	$2.5 \cdot 10^{-5}$	$2.5 \cdot 10^{-5}$	0.03622	0.03633	0.8649	0.8649	-	-
3	$1.5 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	7.1·10 ⁻⁵	7.4·10 ⁻⁵	$3.4 \cdot 10^{-3}$	$3.4 \cdot 10^{-3}$	0.1239	0.1236	-	-
4	$1.5 \cdot 10^{-4}$	$3.5 \cdot 10^{-4}$	$1.8 \cdot 10^{-4}$	$2.5 \cdot 10^{-4}$	$4.8 \cdot 10^{-4}$	$4.9 \cdot 10^{-4}$	0.01602	0.01598	0.2931	-
5	7.8·10 ⁻⁵	$1.3 \cdot 10^{-3}$	$2.6 \cdot 10^{-4}$	0.3976	$2.5 \cdot 10^{-4}$	7.2.10-4	0.00254	0.00265	0.05265	0.539
7	$1.4 \cdot 10^{-5}$	-	7.9·10 ⁻⁵	-	$3.4 \cdot 10^{-4}$	-	$4.6 \cdot 10^{-4}$	-	0.00185	0.02788
10	1.3.10-6	-	8.3.10-6	-	$4.2 \cdot 10^{-5}$	-	$1.8 \cdot 10^{-4}$	-	6.1·10 ⁻⁴	8.7·10 ⁻⁴
12	$7.9 \cdot 10^{-7}$	-	$1.7 \cdot 10^{-6}$	-	8.1.10-6	-	$4.9 \cdot 10^{-5}$	-	$1.4 \cdot 10^{-4}$	$6.4 \cdot 10^{-4}$

Таблица 2. Среднеквадратичное отклонение δ_s (16) для вытянутых угловых СФ нулевого порядка, представленных конечными рядами (7) с использованием табличных [11] и

рассчитанных по (13)-(14) коэффициентов $d_r^{0n}(c)$.

Из Таблицы 2 видно, что результаты для рассчитанных СФ очень близки к полученным с использованием точных коэффициентов $d_r^{0n}(c)$. Нужно заметить, что свойство инвариантности СФ (9) выполняется с высокой точностью для значений параметра $c \ge \pi n/2$, когда собственные числа $\lambda_n(c) \ge 0.1$. В противном случае собственные числа $\lambda_n(c)$ близки к нулю и выражение (9) становится плохо обусловленным.

На рис. 5 приведены примеры нарушения свойства инвариантности СФ (9). Кривая 1 – исходная СФ, кривая 2 – функция, полученная после преобразования (9). Видны сильные нарушения для $S_{02}(1,x)$, $\lambda_2(1)\approx 0.0012$, (рис. 5а) и $S_{03}(2,x)$, $\lambda_3(2)\approx 0.0011$, (рис. 5в) и менее значительные для $S_{02}(2,x)$, $\lambda_2(2)\approx 0.036$, (рис. 5б) и $S_{03}(3,x)$, $\lambda_3(3)\approx 0.018$, (рис. 5г).

Рис. 5. Примеры нарушения свойства инвариантности СФ (9) для (а) $S_{02}(1,x)$, (б) $S_{02}(2,x)$, (в) $S_{03}(2,x)$ и (г) $S_{03}(3,x)$, кривая 1 – исходная СФ, кривая 2 – функция, полученная после преобразования (9).

Тот же эффект нарушения свойства инвариантности (9) наблюдался для табулированных [11] СФ. При этом среднеквадратичное отклонение δ_f СФ, рассчитанных по (13)-(14) от табулированных функций составило не более 13% (см. Таблицу 3).

На рис. 6 приведены сравнительные графики табулированных [11] и рассчитанных СФ нулевого порядка для c=5 и $n=\overline{0,3}$.

тибулировинных функции [11].								
С	<i>n</i> =0	<i>n</i> =1	<i>n</i> =2	<i>n</i> =3				
1	0.0038	0.0364	0.0931	0.1273				
2	0.0134	0.0275	0.0882	0.1266				
3	0.0241	0.0227	0.0775	0.1241				
4	0.0324	0.0306	0.0619	0.1166				
5	0.0373	0.0412	0.0578	0.1027				

Таблица 3. Среднеквадратичное отклонение $\delta_f C \Phi$

нулевого порядка рассчитанных по (13)-(14) от

mating propagation of the propagation of the second s

Рис. 6. Сравнительные графики табулированных [11] и рассчитанных СФ нулевого порядка для c=5 и n=0,3.

В прикладных задачах, связанных с передачей информации, интерес представляют СФ, имеющие высокую концентрацию энергии на заданном интервале, то есть собственные числа которых близки к единице. В этом случае свойство инвариантности (9) выполняется с очень высокой точностью (ошибка менее 0.01%).

Заключение

В данной работе получены следующие результаты:

 разработан простой алгоритм вычисления коэффициентов в приближении СФ конечными рядами полиномов Лежандра и сферических функций Бесселя, позволяющий получать такие коэффициенты с высокой точностью;

на численных примерах показано, что СФ нулевого порядка, рассчитанные через аппроксимацию конечными рядами (6)-(7), удовлетворяют свойству инвариантности (9) к интегральному преобразованию с sinc-ядром на симметричном ограниченном интервале с высокой точностью при с≥nπ/2. В противном случае собственные числа λ_n(с) близки к нулю и выражение (9) становится плохо обусловленным, наступает нарушение свойства инвариантности, что было обнаружено и для табулированных СФ.

Литература

- D. Slepian, H.O. Pollak, Prolate spheroidal wave functions. Fourier Analysis and Uncertainty – I, The Bell System Technical Journal, 1961, 40, p.43-46.
- D. Slepian, Some asymptotic expansions for prolate spheroidal wave functions, J. Math. & Phys., 1965, 44, p. 99-140
- H.J. Landau, H.O. Pollak, Prolate spheroidal wave functions. Fourier Analysis and Uncertainty – II, The Bell System Technical Journal, 1961, 40, p.65-84.
- Я. И. Хургин, В. П. Яковлев, «Методы теории целых функций в радиофизике теории связи и оптике», М., 1962.
- D. Slepian, Prolate spheroidal wave functions. Fourier Analysis and Uncertainty IV: Extensions to many dimensions; generalized prolate spheroidal functions, The Bell System Technical Journal, 1964, 43, p.3009-3057.
- Montgomery W.D., Algebraic formulation of diffraction applied to self-imaging, J. Opt. Soc. Am., 58(8), 1112-1124 (1968).
- Коблянский Ю.В., Курашов В.Н., Использование метода собственных функций оптических систем для статистического анализа пятнистых картин, Оптика и спектроскопия, 1984, 57(4), с. 708-710.
- А. Лоуэн, Сфероидальные волновые функции, в кн. «Справочник по специальным функциям» под ред. М. Абрамовица и И. Стиган, М., «Наука», 1979, 832 с.
- D. Slepian, E. Sonnenblick, Eigenvalues associated with prolate spheroidal wave functions of zero order, The Bell System Technical Journal, 1965, 44, p.1745-1763.
- И. В. Комаров, Л. И. Пономарев, С. Ю. Славянов, «Сфероидальные и кулоновские сфероидальные функции», М., 1976
- 11. Фламмер К., Таблицы волновых сфероидальных функций. – М.: ВЦ АН СССР, 1962. – (БМТ; Вып. 17).

A finite series approximation of spheroidal wave functions

S.N. Khonina

Image Processing Systems Institute of RAS

Abstract

The article considers the approximation of elongated spheroidal functions by finite series and proposes a method for calculating the coefficients of such series. The paper provides a numerical performance analysis of the invariance property of elongated spheroidal zero-order functions in relation to an integral transformation with a sinc-kernel on a symmetric bounded interval.

<u>Citation</u>: Khonina SN. A finite series approximation of spheroidal wave functions. Computer Optics; 1999; 19: 65 – 70.

References

- D. Slepian, H.O. Pollak, Prolate spheroidal wave functions. Fourier Analysis and Uncertainty I, The Bell System Technical Journal, 1961, 40, p.43-46.
- [2] D. Slepian, Some asymptotic expansions for prolate spheroidal wave functions, J. Math. & Phys., 1965, 44, p. 99-140
- [3] H.J. Landau, H.O. Pollak, Prolate spheroidal wave functions. Fourier Analysis and Uncertainty II, The Bell System Technical Journal, 1961, 40, p.65-84.
- [4] Khurgin YI, Yakovlev VP. Methods of the theory of entire functions in radio physics, communications theory, and optics. Moscow: Fizmatgiz; 1962.
- [5] D. Slepian, Prolate spheroidal wave functions. Fourier Analysis and Uncertainty IV: Extensions to many dimensions; generalized prolate spheroidal functions, The Bell System Technical Journal, 1964, 43, p.3009-3057.
- [6] Montgomery W.D., Algebraic formulation of diffraction applied to self-imaging, J. Opt. Soc. Am., 58(8), 1112-1124 (1968).
 [7] Koblyansky YV, Kurashov VN. Application of the method of eigenfunctions of optical systems for the statistical analysis of
- speckle pictures, Optika i Spectroscopiya; 1984; 57(4): 708-710.
- [8] Lowan A. Spheroidal wave functions in Reference book on special functions edited by Abramovits M, Stigan I. Moscow: Nauka Publisher; 1979: 832.
- [9] D. Slepian, E. Sonnenblick, Eigenvalues associated with prolate spheroidal wave functions of zero order, The Bell System Technical Journal, 1965, 44, p.1745-1763.
- [10] Komarov IV, Ponomarev LI, Slavyanov SY. Spheroidal and coulombian spheroidal functions. Moscow: Nauka Publisher; 1976
- [11] Flammer K. Tables of spheroidal wave functions, Vych. Tsentr Akad. Nauk SSSR; Moscow; 1962.