АСИМПТОТИЧЕСКИЙ РАСЧЕТ СВЕТОВОГО ПОЛЯ, ФОРМИРУЕМОГО ДИФРАКЦИОННЫМ ОПТИЧЕСКИМ ЭЛЕМЕНТОМ ДЛЯ ФОКУСИРОВКИ В ЛИНИЮ

A.Ю. Дмитрие $e^{1,2}$, Л.Л. Досколови $e^{1,2}$, С.И. Харитоно $e^{1,2}$

Институт систем обработки изображений РАН, Самара, Россия,

Самарский государственный аэрокосмический университет имени академика С.П. Королева, Самара, Россия

Аннотация

Предложен асимптотический метод расчета светового поля, формируемого дифракционным оптическим элементом (ДОЭ) для фокусировки в линию с использованием криволинейных координат. Исследована структура светового поля, формируемого ДОЭ для фокусировки в отрезок, проведено сравнение результатов асимптотического и численного методов расчета.

<u>Ключевые слова</u>: фокусатор, фазовая функция, интеграл Френеля-Кирхгофа, асимптотический метод, интенсивность, световое поле, метод стационарной фазы.

Введение

В работах [1-3] предложен асимптотический метод расчета интенсивности светового поля, формируемого фокусатором в отрезок (формируемого ДОЭ для фокусировки в отрезок). Метод основан на использовании метода стационарной фазы в интеграле Френеля-Кирхгофа при интегрировании поперек слоя фокусатора. Повторный интеграл вдоль слоя вычисляется точно, что позволяет учесть дифракционную ширину отрезка фокусировки. Метод [1-3] позволил получить выражения для распределения интенсивности в плоскости фокусировки и решить обратную задачу фокусировки с учетом дифракционной ширины отрезка фокусировки [4,5].

В указанных работах [1-3] не было получено выражений для интенсивности поля в пространстве (вне плоскости фокусировки), не сделано обобщения на случай произвольной кривой.

В данной работе предложен асимптотический метод расчета светового поля от фокусатора в произвольную линию. Метод обобщает результаты работ [1-3] на случай фокусировки в кривую общего вида и позволяет рассчитывать интенсивность в пространственной окрестности линии фокусировки. В качестве примера приведен расчет поля, формируемого фокусатором в отрезок. Расчет проведен как в плоскости фокусировки, так и в плоскости, содержащей отрезок и оптическую ось, проведено сравнение результатов асимптотического и численного расчетов.

1. Фазовая функция в криволинейных координатах

Пусть кривая фокусировки задана в параметрическом виде:

$$\mathbf{X}(\xi) = (X(\xi), Y(\xi), f), \tag{1}$$

где ξ - натуральный параметр, а f – расстояние от плоскости фокусатора до плоскости фокусировки.

При расчете фокусаторов используется понятие слоя как одномерного множества $\Gamma(\xi)$ точек (u,v) на апертуре фокусатора, направляющих излучение в одну и ту же точку $\mathbf{X}(\xi)$ кривой. В параксиальном приближении эти слои являются прямыми, перпендикулярными касательным к фокальной кривой [4,5]:

$$\frac{\mathrm{d}X(\xi)}{\mathrm{d}\xi}u + \frac{\mathrm{d}Y(\xi)}{\mathrm{d}\xi}v = p(\xi), \qquad (2)$$

где $p(\xi)$ – расстояние от слоя до начала координат в плоскости фокусатора.

В работах [4,5] получена фазовая функция фокусатора в линию в общем виде:

$$\varphi(\xi,t) = -\frac{k}{2f}(p^2(\xi) + t^2) + \varphi_D(\xi,t), \qquad (3)$$

гле

$$\begin{split} & \phi_D(\xi, t) = \frac{k}{f} \left[\frac{\mathrm{d}X(\xi)}{\mathrm{d}\xi} Y(\xi) - X(\xi) \frac{\mathrm{d}Y(\xi)}{\mathrm{d}\xi} \right] \cdot t + \\ & + \frac{k}{f} \left[\frac{\mathrm{d}X(\xi)}{\mathrm{d}\xi} X(\xi) - \frac{\mathrm{d}Y(\xi)}{\mathrm{d}\xi} Y(\xi) \right] p(\xi) - \frac{k}{f} \int_0^{\xi} p(\eta) \, \mathrm{d}\eta \,, \end{split}$$

где
$$k = \frac{2\pi}{\lambda}$$
, λ – длина волны.

Фазовая функция (3) записана в криволинейной системе координат (ξ ,t) [4,7]:

$$u(\xi,t) = p(\xi) \frac{dX(\xi)}{d\xi} - t \frac{dY(\xi)}{d\xi},$$

$$v(\xi,t) = p(\xi) \frac{dY(\xi)}{d\xi} + t \frac{dX(\xi)}{d\xi}.$$
(4)

Функция $p(\xi)$ в фазовой функции (3) определяет распределение энергии вдоль кривой фокусировки и может быть найдена из закона сохранения светового потока [6].

2. Асимптотический метод расчета интенсивности, формируемой фокусатором в кривую

Для простоты выкладок будем считать интенсивность падающего плоского пучка постоянной, т.е. $I_0(\mathbf{u}) = I_0$. Комплексная амплитуда светового поля, формируемого фокусатором, определяется интегралом Френеля-Кирхгофа:

$$w(x, y, z) = \frac{k \exp[ikz]}{2\pi i z} \iint_{P} \sqrt{I_0} \exp[i\varphi(u, v)] \times \exp\left[i\frac{k}{2z} \left[(x-u)^2 + (y-v)^2\right]\right] du dv.$$
 (5)

Перейдем к криволинейной системе координат (4):

$$w(x, y, z) = \frac{k \exp[ikz]}{2\pi i z} \iint_{D(\xi, \eta)} \sqrt{I_0} \exp[i\varphi(\xi, t)] \times \exp\left[i\frac{k}{2z} \left(\left(x - u(\xi, t)\right)^2 + \left(y - v(\xi, t)\right)^2\right)\right] \times (6)$$

$$\times J(\xi, \eta) \, d\xi \, d\eta,$$

гле

$$J(\xi,t) = \frac{\mathrm{d}p(\xi)}{\mathrm{d}\xi} - t K^2(\xi) \tag{7}$$

- якобиан преобразования координат, $K(\xi)$ – кривизна кривой. В дальнейшем будем считать кривизну малой, так что $J(\xi,t) \approx \mathrm{d} p(\xi)/\mathrm{d} \xi$.

Первоначально получим формулу для интенсивности поля в плоскости фокусировки (z=f).

Как и в [1-3], при расчете поля, формируемого фокусатором в отрезок, при интегрировании в (6) поперек слоя (по переменной ξ) будем использовать метод стационарной фазы [7], а повторный интеграл по t будем рассчитывать точно. Тогда интенсивность можно получить в следующем виде:

$$I(x, y, f) = \frac{2kI_0}{\pi f} \operatorname{sinc}^2 \left\{ \frac{k}{f} \sqrt{R^2 - p^2} \times \left(\frac{dY(\xi)}{d\xi} \left(X(\xi) - x \right) - \frac{dX(\xi)}{d\xi} \left(Y(\xi) - y \right) \right) \right\} \times \left(\frac{dp(\xi)}{d\xi} \sqrt{R^2 - p^2} \right),$$
(8)

где х, у находятся из уравнения на стационарную точку:

$$\frac{dX(\xi)}{d\xi} \left(X(\xi) - x \right) +
+ \frac{dY(\xi)}{d\xi} \left(Y(\xi) - y \right) - p(\xi) = 0.$$
(9)

Непосредственной подстановкой легко проверить, что решением уравнения (9) является следующая система:

$$\begin{cases} x(\gamma;\xi) = X(\xi) - \gamma \frac{dY(\xi)}{d\xi}, \\ y(\gamma;\xi) = Y(\xi) + \gamma \frac{dX(\xi)}{d\xi}, \end{cases}$$
(10)

где $\gamma > 0$ – параметр.

При фиксированном $\xi = \xi_0$, уравнения (10) определяют прямую, перпендикулярную кривой фокусировки в точке $\mathbf{X}(\xi_0) = (X(\xi_0), Y(\xi_0), f)$. Таким образом, получим распределение интенсивности в криволинейных координатах:

$$I\left(x(\gamma;\xi),y(\gamma;\xi),f\right) = \frac{2kI_0}{\pi f} \frac{dp(\xi)}{d\xi} \times \sin c^2 \left\{ \frac{k}{f} \sqrt{R^2 - p^2} \left(\frac{dY(\xi)}{d\xi} \left(X(\xi) - x(\gamma;\xi) \right) - \frac{dX(\xi)}{d\xi} \left(Y(\xi) - y(\gamma;\xi) \right) \right\} \right\} \sqrt{R^2 - p^2}.$$
(11)

В выражении для интенсивности (11) функция $\sin c^2(x, y, \xi)$ появляется при интегрировании вдоль слоя и описывает распределение интенсивности поперек линии фокусировки. Пренебрежение кривизной в якобиане (7) означает пренебрежение взаимным влиянием поперечных распределений при различных ξ .

При расчете интенсивности в пространственной окрестности линии фокусировки для интегрирования поперек слоя также используем метод стационарной фазы. При этом повторный интеграл может быть представлен через интегралы Френеля. Таким образом, интенсивность в пространственной окрестности линии фокусировки имеет вид:

$$I(x, y, z) = \frac{f^2 I_0}{2|f - z| \cdot |\phi''(\xi)|} \times \left(\frac{\mathrm{d}p(\xi)}{\mathrm{d}\xi}\right)^2 \left(\left(C\left(F_2\right) - C\left(F_1\right)\right)^2 + \left(S\left(F_2\right) - S\left(F_1\right)\right)^2\right),\tag{12}$$

где $C(F) = \int_{0}^{F} \cos \frac{\pi t^2}{2} dt$, $S(F) = \int_{0}^{F} \sin \frac{\pi t^2}{2} dt$ — интегралы Френеля,

$$F_{1} = \sqrt{\frac{2k}{\pi f z}} \cdot \left\{ -\sqrt{R^{2} + p(\xi)^{2}} \cdot \sqrt{\frac{f - z}{2}} + \right.$$

$$+ \left[\frac{dX(\xi)}{d\xi} \left(Y(\xi)z - yf \right) - \frac{dY(\xi)}{d\xi} \left(X(\xi)z - xf \right) \right] \right\},$$

$$F_{2} = \sqrt{\frac{2k}{\pi f z}} \cdot \left\{ \sqrt{R^{2} + p(\xi)^{2}} \cdot \sqrt{\frac{f - z}{2}} + \right.$$

$$+ \left[\frac{dX(\xi)}{d\xi} \left(Y(\xi)z - yf \right) - \frac{dY(\xi)}{d\xi} \left(X(\xi)z - xf \right) \right] \right\},$$

$$\phi(\xi) = p^{2}(\xi) \frac{(f - z)}{2} + p(\xi) \times$$

$$\times \left(\frac{dX(\xi)}{d\xi} \left(X(\xi)z - xf \right) + \frac{dY(\xi)}{d\xi} \left(Y(\xi)z - yf \right) \right) -$$

$$-z \int_{0}^{\xi} p(\eta) d\eta - \frac{1}{2(f - z)} \times$$

$$\times \left(\frac{dX(\xi)}{d\xi} \left(Y(\xi)z - yf \right) - \frac{dY(\xi)}{d\xi} \left(X(\xi)z - xf \right) \right)^{2}.$$

Координаты (x, y, z) находятся из уравнения на стационарные точки:

$$p(\xi) \frac{dp(\xi)}{d\xi} (f-z) + \frac{dp(\xi)}{d\xi} \times \left[\frac{dX(\xi)}{d\xi} \left(X(\xi)z - xf \right) + \frac{dY(\xi)}{d\xi} \left(Y(\xi)z - yf \right) \right] - \frac{1}{f-z} \left[\frac{d^2X(\xi)}{d\xi^2} xf + \frac{d^2Y(\xi)}{d\xi^2} yf \right] - \frac{1}{d\xi^2} \left[\frac{d^2X(\xi)}{d\xi^2} \left(Y(\xi)z - yf \right) - \frac{d^2Y(\xi)}{d\xi^2} \left(X(\xi)z - xf \right) \right] \times \left[\frac{dX(\xi)}{d\xi} \left(Y(\xi)z - yf \right) - \frac{dY(\xi)}{d\xi} \left(X(\xi)z - xf \right) \right] = 0.$$

$$(13)$$

Подстановкой легко проверить, что решением уравнения (13) является следующая система:

$$\begin{cases} x(l;\xi,t) = u(\xi,t)(1-l) + X(\xi)l, \\ y(l;\xi,t) = v(\xi,t)(1-l) + Y(\xi)l, \\ z(l;\xi,t) = fl, \end{cases}$$
(14)

где l > 0 - параметр.

При фиксированном $\xi = \xi_0$, уравнения (14) определяют плоскость, проходящую через слой (2) и точку на кривой фокусировки $\mathbf{X}(\xi_0) = (X(\xi_0), Y(\xi_0), f)$.

В итоге, мы получили формулу для расчета интенсивности, формируемой фокусатором в произвольную линию в пространственной окрестности линии фокусировки. Причем расчет интенсивности в (12) производится в точках $x(l;\xi,t)$, $y(l;\xi,t)$, $z(l;\xi,t)$, удовлетворяющих уравнению на стационарные точки (13).

3. Расчет светового поля, формируемого фокусатором в отрезок

Параметрическое уравнение отрезка длины d в плоскости фокусировки z = f имеет вид:

$$\mathbf{X}(\xi) = \left(\xi - \frac{d}{2}\right), \quad \xi \in [0, d]. \tag{15}$$

При расчете поля, формируемого фокусатором в отрезок, криволинейные координаты (4) совпадают с декартовыми, т. к. слои (2) являются отрезками прямых $u = p(\xi)$ перпендикулярных фокальному отрезку.

Фазовая функция в декартовых координатах имеет вид:

$$\varphi(u,v) = -\frac{k(u^2 + v^2)}{2f} + \varphi_D(u), \qquad (16)$$

где
$$\varphi_D(u) = \frac{k}{f} \int_0^u x(u') du'.$$

Функция x(u) находится из закона сохранения светового потока [6]:

$$x(u) = \frac{d}{\pi R^2} \left(u \sqrt{R^2 - u^2} + R^2 \arcsin\left(\frac{u}{R}\right) \right). \tag{17}$$

Из общего выражения (11) для интенсивности в плоскости фокусировки получим интенсивность для случая отрезка в виде:

$$I(x(u), y, f) = \frac{kR^2I_0}{df}\sin c^2 \times \left(\frac{k}{f}y\sqrt{R^2 - u^2}\right)\sqrt{R^2 - u^2},$$
(18)

где x(u) определено уравнением (18).

Выражение для интенсивности в пространственной окрестности отрезка получим из (12) в виде:

$$I(x, y, z) = \frac{2f^{2}I_{0}}{|f - z| \cdot |f - z + \phi_{D}^{"}(u)z|} \times \left(\left(C(F_{2}) - C(F_{1}) \right)^{2} + \left(S(F_{2}) - S(F_{1}) \right)^{2} \right),$$
(19)

где

$$F_{1} = \left(-\sqrt{\frac{(R^{2} - u^{2}) \cdot |f - z|}{f z}} - \frac{1}{2} \sqrt{\frac{f}{z(f - z)}} y\right) \sqrt{\frac{k}{\pi}},$$

$$F_2 = \left(\sqrt{\frac{(R^2 - u^2) \cdot \left| f - z \right|}{f z}} - \frac{1}{2} \sqrt{\frac{f}{z \left(f - z \right)}} y \right) \sqrt{\frac{k}{\pi}} .$$

Подставив y = 0 в (19), получим формулу для интенсивности в плоскости, содержащей отрезок и оптическую ось:

$$I(x,0,z) = \frac{2f^2 I_0}{\left| f - z \right| \cdot \left| f - z + \phi_D^{"}(u_0)z \right|} \times \left(C^2 \left(T\left(u_0\right) \right) + S^2 \left(T\left(u_0\right) \right) \right), \tag{20}$$

где C(T), S(T) - интегралы Френеля,

$$T = \sqrt{\frac{k(R^2 - u^2) \cdot \left| f - z \right|}{\pi f z}} ,$$

$$\phi_D^{"}(u) = \frac{2d}{\pi R^2} \sqrt{R^2 - u^2}.$$

Координаты (x, z) находятся из уравнения на стационарные точки:

$$x = \frac{1}{f}(f - z)u + \frac{1}{f}z\phi_{D}'(u).$$
 (21)

Решением (21) является следующая система:

$$\begin{cases} x(l;u) = u + (x(u) - u)l, \\ z(l;u) = fl, \end{cases}$$
 (22)

где l — параметр. При фиксированном u, уравнения (22) определяют прямую, проходящую через точку на слое (u,0) и точку на отрезке фокусировки.

4. Исследование точности асимптотического метода для фокусатора в отрезок

Для оценки точности асимптотического метода производился численный расчет интеграла Френеля-Кирхгофа (5) по методу Гопкинса [8].

Формулы для численного расчета комплексной амплитуды в плоскости фокусировки и в плоскости, содержащей отрезок и оптическую ось, имеют вид:

$$w(x, y, f) =$$

$$= \sum_{j=1}^{N} \exp\left(i\left(\phi_{D}\left(u_{j-1}\right) - \phi_{D}\left(u_{j-1}\right)u_{j-1}\right)\right) \times$$

$$\times p\left(u_{j}, y\right) \exp\left(i\alpha\left(u_{j} - \frac{\Delta u}{2}\right)\right) \times$$

$$\times \sin c\left(\alpha\frac{\Delta u}{2}\right) \Delta u C,$$
(23)

где

$$p(u, y) = \sqrt{I_0} \operatorname{sin} c \left(\frac{k}{f} y \sqrt{R^2 - u^2}\right) \sqrt{R^2 - u^2},$$

$$\alpha = \phi_D'(u_{j-1}) - \frac{k}{f} x.$$

$$w(x, 0, z) = \frac{\sqrt{fkI_0} e^{ikf}}{i\sqrt{\pi z |f - z|}} e^{i\frac{kx^2}{2z}} \times$$

$$\times \sum_{j=1}^{N} \left(C(T(u_j)) + iS(T(u_j))\right) \times$$

$$\times e^{i\left(\alpha + \beta\left(u_j - \frac{\Delta u}{2}\right)\right)} \operatorname{sin} c\left(\frac{\beta \Delta u}{2}\right) \Delta u,$$
(24)

где C(T), S(T) – интегралы Френеля,

$$\begin{split} T &= \sqrt{\frac{k(R^2 - u^2) \cdot \left| f - z \right|}{\pi f z}}, \\ \alpha &= \frac{k}{f} \phi_D(u_{j-1}) - \frac{k(f - z)}{2 f z} \left(u_{j-1}^2 \right) - \frac{k}{f} \phi_D(u_{j-1}) u_{j-1}, \\ \beta &= \frac{k}{f} \left(\frac{f - z}{z} u_{j-1} + \phi_D'(u_{j-1}) - \frac{f x}{z} \right). \end{split}$$

Расчет интенсивности светового поля, формируемого фокусатором в отрезок, происходил при следующих параметрах системы: R=3 мм, f=200 мм. В результате расчетов было установлено, что при длине отрезка $d=40\Delta$ и более, где $\Delta=\lambda f/2R$ —

ширина дифракционного пятна, асимптотический метод дает результаты, хорошо совпадающие с численным расчетом.

В качестве примера приведем результаты расчета интенсивности при длине отрезка $d=60\Delta$. Сначала приведем результаты расчета в плоскости фокусировки (рис. 1).

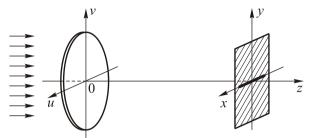


Рис. 1. Фокусатор в отрезок. Штриховкой выделена плоскость фокусировки (z=f)

На рис. 2-5 изображено распределение интенсивности от фокусатора в отрезок в фокальной плоскости. Погрешность расчета асимптотическим методом относительно расчета численным методом составила около 14%.

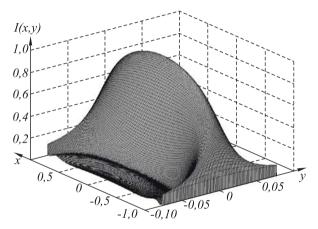


Рис. 2. Распределение интенсивности в фокальной плоскости, полученное асимптотическим методом $(d=60\Delta)$

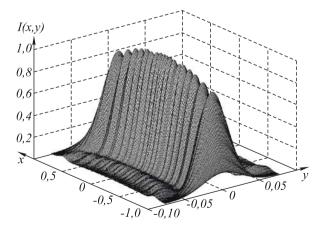


Рис. 3. Распределение интенсивности в фокальной плоскости, полученное численным методом (d=60 Δ)

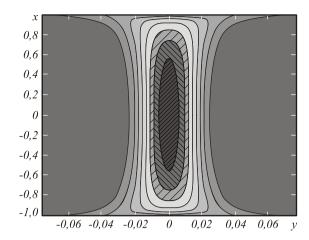


Рис. 4. Изолинии распределения интенсивности в фокальной плоскости, полученного асимптотическим методом (d=601)

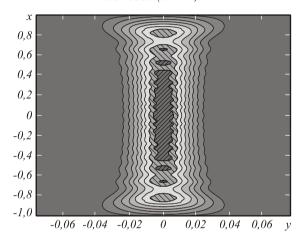


Рис. 5. Изолинии распределения интенсивности в фокальной плоскости, полученного численным методом $(d=60\Delta)$

Результаты расчета интенсивности в фокальной плоскости, проиллюстрированные на рис. 2-5, согласуются с результатами работ [1-3].

Теперь приведем результаты расчета в плоскости, содержащей отрезок и оптическую ось (рис. 6).

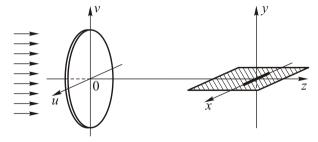


Рис. 6. Фокусатор в отрезок. Штриховкой выделена плоскость, содержащая отрезок и оптическую ось (y=0)

На рис. 7-10 показаны результаты расчета интенсивности, формируемой фокусатором в отрезок в плоскости, содержащей отрезок и оптическую ось. Данные результаты являются новыми. Погрешность расчета асимптотическим методом относительно расчета численным методом составила около 11%.

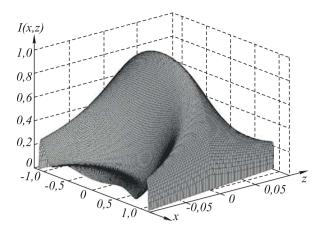


Рис. 7. Распределение интенсивности в плоскости, содержащей отрезок и оптическую ось, полученное асимптотическим методом (d=601)

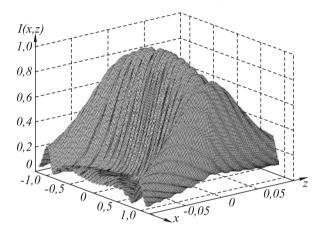


Рис. 8. Распределение интенсивности в плоскости, содержащей отрезок и оптическую ось, полученное численным методом $(d=60\Delta)$

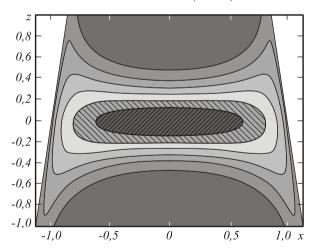


Рис. 9. Изолинии распределения интенсивности в плоскости, содержащей отрезок и оптическую ось, полученного асимптотическим методом (d=601)

Из рис. 2-5 и 7-10 видно, что расчет асимптотическим методом дает результат близкий к результату расчета численным методом.

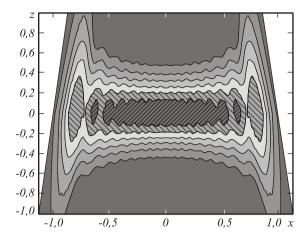


Рис. 10. Изолинии распределения интенсивности в плоскости, содержащей отрезок и оптическую ось, полученного численным методом (d=601)

При уменьшении длины отрезка фокусировки асимптотический метод работает хуже. Это иллюстрируют рис. 11 и рис. 12, где изображены изолинии распределений интенсивности в плоскости, содержащей отрезок и оптическую ось, для длины отрезка фокусировки $d=20\Delta$, полученных асимптотическим и численным методами соответственно. Погрешность расчета асимптотическим методом относительно расчета численным методом составила около 22%.

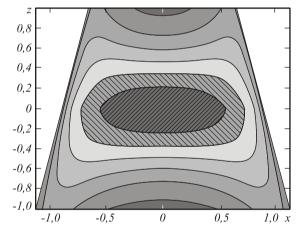


Рис. 11. Изолинии распределения интенсивности в плоскости, содержащей отрезок и оптическую ось, полученного асимптотическим методом (d=201)

Заключение

В работе предложен асимптотический метод расчета светового поля от фокусатора в произвольную линию. Метод основан на использовании метода стационарной фазы в интеграле Френеля-Кирхгофа при интегрировании поперек слоя. Повторный интеграл вдоль слоя вычисляется точно, что позволяет учесть дифракционную ширину отрезка фокусировки. Метод позволяет рассчитывать интенсивность в пространственной окрестно-

сти линии фокусировки. Проведено сравнение результатов асимптотического и численного расчетов поля на примере фокусатора в отрезок. Показано, что расчет асимптотическим методом дает результат близкий к результату расчета численным методом при длине отрезка порядка 40-ка дифракционных пятен и более.

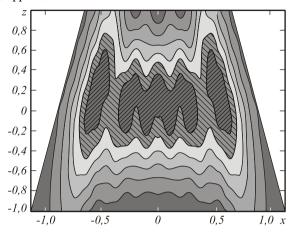


Рис. 12. Изолинии распределения интенсивности в плоскости, содержащей отрезок и оптическую ось, полученного численным методом (d=201)

Благодарности

Работа выполнена при поддержке фонда «Фундаментальные исследования и высшее образование» ("BRHE", грант RUXO-014-SA-06) и грантов РФФИ № 07-07-97601-р_офи, 07-01-96602-р_поволжье_а, 07-07-91580-АСП_а, 08-07-99005-р_офи, «Фонда содействия отечественной науке» и Президента РФ № НШ-3086.2008.9.

Литература

- Голуб, М.А. Дифракционный расчет интенсивности поля вблизи фокальной линии фокусатора / [М.А. Голуб и др.] // Оптика и спектроскопия, 1989. – Т. 67, № 6. – С.1387-1389.
- Голуб, М.А. Дифракционные поправки при фокусировке лазерного излучения в отрезок / [М.А. Голуб и др.] // Оптика и спектроскопия, 1991. Т.71, № 6. С.1069-1073.
- Soifer, V.A. Diffraction investigation of focusators into straight-line segment / [V.A. Soifer and other] // Proceedings SPIE, 1992. – Vol. 1718 ("Workshop on Digital Holography"). – P.33-44.
- Методы компьютерной оптики / под ред. В.А. Сойфера - М.: Физматлит, 2000. Глава 5.
- Дифракционная компьютерная оптика / под ред. В.А. Сойфера - М.: Физмалит, 2007. Глава 3.
- Борн, М. Основы оптики / М. Борн, Э. Вольф М.: Наука, 1973.
- 7. **Гончарский, А.В** Введение в компьютерную оптику / А.В. Гончарский, В.В. Попов, В.В. Степанов М.: Изд-во МГУ, 1991.
- 8. **Hopkins, H.H.** The numerical evaluation of the frequency response of the optical systems / H.H. Hopkins // Proc. Phys. Soc., 1957. B.70 P.1002-1005.

ASYMPTOTIC COMPUTATION OF THE LIGHT FIELD INTENSITY FOR A DIFFRACTIVE OPTICAL ELEMENT TO FOCUS INTO A LINE

A.Y. Dmitriev^{1,2}, L.L. Doskolovich^{1,2}, S.I. Kharitonov^{1,2}

¹Image Processing Systems Institute of the Russian Academy of Sciences, Samara, Russia,

²S.P. Korolyov Samara State Aerospace University, Samara, Russia

Abstract

We discuss an asymptotic method for computing the intensity of the light field produced by a diffractive optical element (DOE) to focus into an arbitrary line using curvilinear coordinates. The structure of the light field produced by a DOE intended to focus into a line-segment is studied. A comparison is drawn between the results of the asymptotic and numerical methods of computation.

<u>Keywords:</u> diffractive optical element, phase function, Fresnel-Kirchhoff integral, asymptotic method, intensity, light field, stationary phase method.

<u>Citation</u>: Dmitriev AYu, Doskolovich LL, Kharitonov SI. Asymptotic computation of the light field intensity for a diffractive optical element to focus into a line. Computer Optics 2008; 32(2): 195-200.

<u>Acknowledgements</u>: The work was supported by the Foundation "Basic Research and Higher Education» ("BRHE", grant RUXO-014-SA-06) and RFBR grants № 07-07-97601-r_ofi, 07-01-96602-r_povolzhe_a, 07-07- 91,580-ASTP_A, 08-07-99005-r_ofi, "Russian Science Support Foundation", and the President of the Russian Federation number NS-3086.2008.9.

References

- [1] Golub MA, Kazanskii NL, Sisakyan VA, Soifer VA, Kharitonov SI. Diffraction calculation of the field intensity near the focal line of a focuser. Optics and Spectroscopy 1989; 67(6): 814-815.
- [2] Golub MA, Doskolovich LL, Sisakyan IN, Soifer VA, Kharitonov SI. Diffraction corrections in focusing of coherent radiation into a line. Optics and Spectroscopy 1991; 71(6): 615-617.
- [3] Soifer VA, Doskolovich LL, Golub MA, Kazanskiy NL. Diffraction investigation of focusators into straight-line segment. Proceedings of SPIE 1992; 1718: 33-44.
- [4] Soifer VA, ed. Methods of Computer Optics [In Russian]. Moscow: "Fizmatlit" Publisher, 2000.
- [5] Soifer VA, ed. Diffractive Computer Optics [In Russian]. Moscow: "Fizmatlit" Publisher, 2007.
- [6] Born M, Volf E. Principles of Optics [In Russian]. Moscow: "Nauka" (Science) Publisher, 1973.
- [7] Goncharskiy AV, Popov VV, Stepanov VV. Introduction to Computer Optics [In Russian]. Moscow: MSU (Lomonosov Moscow State University) Publisher, 1991.
- [8] Hopkins HH. The numerical evaluation of the frequency response of the optical systems. Proc. Phys. Soc. 1957; B.70: 1002-1005.