С.Н. Хонина, С.Г. Волотовский

УПРАВЛЕНИЕ ВКЛАДОМ КОМПОНЕНТ ВЕКТОРНОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ В ФОКУСЕ ВЫСОКОАПРЕТУРНОЙ ЛИНЗЫ С ПОМОЩЬЮ БИНАРНЫХ ФАЗОВЫХ СТРУКТУР

Светлана Николаевна Хонина^{1,2} (ведущий научный сотрудник, e-mail: <u>khonina@smr.ru</u>), Сергей Геннадьевич Волотовский¹ (ведущий программист, e-mail <u>sv@smr.ru</u>)

¹ Учреждение Российской академии наук Институт систем обработки изображений РАН,

² Самарский государственный аэрокосмический университет имени академика С.П. Королева

Аннотация

Показана возможность управления вкладом компонент векторного электрического поля в фокальной области с помощью бинарных фазовых структур с целью уменьшения поперечного размера центрального светового пятна фокусирующей системы с высокой числовой апертурой. На основе анализа матрицы поляризационного преобразования высокоапертурной линзы и численного моделирования фокусирующей системы в приближении Дебая показана эффективность использования полноапертурных асимметричных бинарных распределений для формирования субволнового центрального пятна площадью по полуспаду интенсивности $0,08\lambda^2$ с эффективностью 3,6% для линейной поляризации, $0,084\lambda^2$ с эффективностью 13% для радиальной поляризации и $0,054\lambda^2$ с эффективностью 2,4% для азимутальной поляризации.

<u>Ключевые слова</u>: острая фокусировка, размер фокального пятна, бинарный фазовый дифракционный оптический элемент.

Введение

В последнее время появилось много работ, рассматривающих возможности уменьшения поперечного размера фокального пятна или/и увеличения продольной протяженности фокальной области высокоапертурной фокусирующей системы [1-11]. Причем, как правило, рассматривается радиальная поляризация, т.к. в этом случае достигается наиболее «острая» фокусировка, т.е. минимальный поперечный размер фокального пятна.

Данный эффект связан с тем, что при радиальной поляризации обеспечивается наилучшее перераспределение энергии в одну компоненту электрического поля (продольную). Изменение функции пропускания линзы – блокирование центральной части [2, 4] или более эффективное дополнение фазовыми оптическими элементами [8, 12] – позволяет еще уменьшить вклад других компонент в общую интенсивность на оптической оси. Минимизация вклада поперечных компонент в данном случае приводит к достижению предела, предсказываемого скалярной теорией.

Для генерации радиально-поляризованных пучков было разработано множество внутри- и внерезонаторных схем [13-22], но все они достаточно сложны в реализации либо требуют дорогостоящих устройств, к которым можно отнести не только динамические транспаранты, но и субволновые решетки для видимого диапазона длин волн.

Большинство современных лазеров излучает линейно-поляризованный свет, также нетрудно получить круговую поляризацию. Таким образом, интересно рассмотреть возможность аналогичного выделения отдельной компоненты электрического поля с целью достижения наиболее компактной осевой локализации интенсивности для более распространенных и простых в реализации типов поляризации.

В работе [12] показана такая возможность при использовании в качестве дополнительной функции пропускания линзы аксиконов и вихревых аксиконов, однако изготовление многоуровневых дифракционных оптических элементов, позволяющих реализовать такую функцию пропускания, сопряжено с определенными сложностями [23]. С другой стороны, суперпозицию оптических вихрей с противоположными знаками можно производить с помощью бинарной фазовой функции [24, 25].

В данной работе с целью уменьшения поперечного размера центрального светового пятна фокусирующей системы с высокой числовой апертурой рассматривается изменение вклада различных компонент векторного электрического поля в фокальную область с помощью дополнения этой системы бинарными фазовыми дифракционными оптическими элементами (ДОЭ).

Управление вкладом различных компонент электрического поля с помощью простых, но энергетически эффективных оптических элементов может быть также полезно при исследовании избирательной чувствительности вещества, взаимодействующего с электромагнитным излучением [26].

Анализ и численное моделирование высокоапертурной фокусирующей системы проводится в приближении Дебая с использованием интегральных формул Ричардса-Вулфа [27].

Управление вкладом компонент в фокусе высокоапертурной линзы

В работе [12] было показано, что субволновая локализация в отдельных компонентах векторного поля возможна при любых типах поляризации. Причем с помощью вихревой пропускающей функции можно управлять вкладом продольной и поперечных компонент в осевое распределение общей интенсивности.

Аналогичный эффект можно получить и с помощью бинарных фазовых элементов, которые значительно проще изготавливать, чем многоуровневый фазовый микрорельеф, необходимый для создания вихревой пропускающей функции в нулевом порядке дифракции.

Для высокоапертурной фокусирующей оптической системы векторное электрическое поле в однородной диэлектрической среде вблизи фокуса часто рассматривается с использованием формул Ричардса-Вулфа [27]:

$$\mathbf{E}(\rho, \varphi, z) = -\frac{if}{\lambda} \int_{0}^{2\pi} \int_{0}^{2\pi} B(\theta, \phi) T(\theta) \mathbf{P}(\theta, \phi) \times$$

$$\times \exp[ik(\rho \sin \theta \cos(\phi - \varphi) + z \cos \theta)] \sin \theta \, d\theta \, d\phi,$$
(1)

где (р, ф, z) – цилиндрические координаты фокальной области.

$$\mathbf{P}(\theta,\phi) = \begin{bmatrix} 1 + \cos^2 \phi(\cos \theta - 1) & \sin \phi \cos \phi(\cos \theta - 1) & \cos \phi \sin \theta \\ \sin \phi \cos \phi(\cos \theta - 1) & 1 + \sin^2 \phi(\cos \theta - 1) & \sin \phi \sin \theta \\ -\sin \theta \cos \phi & -\sin \theta \sin \phi & \cos \theta \end{bmatrix} \begin{bmatrix} a(\theta,\phi) \\ b(\theta,\phi) \\ c(\theta,\phi) \end{bmatrix},$$
(2)

где $a(\theta,\phi)$, $b(\theta,\phi)$, $c(\theta,\phi) - \phi$ ункции поляризац для x-, y- и z-компоненты падающего пучка.

В случае, когда функция пропускания имеет вид:

$$B(\theta, \phi) = R(\theta)\Omega_{\mu}(\phi), \qquad (3)$$

где

$$\Omega_{B}(\phi) = \sum_{m=M_{1}}^{M_{2}} d_{m} \exp(im\phi), \qquad (4)$$

а коэффициенты входной поляризации не зависят от в и также представимы в виде суперпозиции угловых гармоник (4): $a(\phi) = \Omega_a(\phi)$, $b(\phi) = \Omega_{h}(\phi),$ $c(\phi) = \Omega_{c}(\phi)$, интегралы по ϕ в (1) будут выражаться через соответствующую сумму бесселевых функций первого рода различного порядка:

$$\int_{0}^{2\pi} \exp(ik\rho\sin\theta\cos(\phi-\phi))\Omega_{p}(\phi)\Omega_{B}(\phi)d\phi =$$

$$= \int_{0}^{2\pi} \exp(ik\rho\sin\theta\cos(\phi-\phi))\sum_{l,m}p_{l}d_{m}\times$$

$$\times \exp[i(l+m)\phi]d\phi = 2\pi\sum_{l,m}p_{l}d_{m}i^{l+m}\times$$

$$\times \exp[i(l+m)\phi]J_{l+m}(t), \quad t = k\rho\sin\theta,$$
(5)

где p_1 – коэффициенты суперпозиции вида (4) для р-го коэффициента входной поляризации.

Тогда интеграл (1) может быть сведен к выражению [12]:

$$\mathbf{E}(\rho, \phi, z) = -ikf \int_{0}^{\alpha} \mathbf{Q}(\rho, \phi, \theta) q(\theta) \, \mathrm{d}\theta \,, \tag{6}$$

 $q(\theta) = R(\theta)T(\theta)\sin\theta\exp(ikz\cos\theta)$, гле а вид $Q(\rho, \phi, \theta)$ зависит от поляризации входного поля и компоненты этой матрицы состоят из суперпозиции бесселевых функций первого рода различного порядка.

<u>1. Линейная поляризация</u>

Так как большинство современных лазеров излучает линейно-поляризованный свет, а использование поляризационных конверторов приводит к существенному усложнению оптической схемы, поиск простых способов уменьшения размера фокального пят-

((θ, ϕ)) – сферические угловые координаты выходного зрачка фокусирующей системы, $B(\theta, \phi) - \phi$ ункция пропускания, $T(\theta) - \phi$ ункция аподизации зрачка, $\mathbf{P}(\theta, \phi)$ – матрица поляризации, $n \sin \alpha = NA$ – числовая апертура, *n* – показатель преломления среды, $k = 2\pi / \lambda$ – волновое число, λ - длина волны, f - фокусное расстояние.

Матрица поляризации фокусирующей системы **Р**(θ , ϕ) имеет следующий вид [7]:

$$\begin{array}{c} +\sin \phi(\cos \theta - 1) & \sin \phi \sin \theta \\ -\sin \theta \sin \phi & \cos \theta \end{array} \right] \begin{bmatrix} b(\theta, \phi) \\ c(\theta, \phi) \end{bmatrix}, \tag{2}$$

7.0

Без потери общности рассмотрим поляризацию вдоль одной из поперечных осей.

При линейной х-поляризации коэффициенты входной поляризации $a(\phi) = 1, b(\phi) = 0, c(\phi) = 0, a$ матрица поляризации системы сводится к виду:

$$\mathbf{P}(\theta, \phi) = \begin{vmatrix} 1 + \cos^2 \phi(\cos \theta - 1) \\ \sin \phi \cos \phi(\cos \theta - 1) \\ -\cos \phi \sin \theta \end{vmatrix}.$$
 (7)

При отсутствии у функции пропускания (3) вихревых компонент $\Omega_B(\phi) = 1$ матрица $\mathbf{Q}(\rho, \phi, \theta)$ в (6) будет иметь только один ненулевой столбец:

$$\mathbf{Q}(\rho, \phi, \theta) = \begin{bmatrix} J_0(t) + C2(t)(\cos \theta - 1) \\ SC(t)(\cos \theta - 1) \\ -C(t)\sin \theta \end{bmatrix},$$
(8)

гле

$$C2(t) = \frac{1}{4} \Big[2J_0(t) - e^{i2\varphi} J_2(t) - e^{-i2\varphi} J_{-2}(t) \Big],$$

$$SC(t) = \frac{i}{4} \Big[e^{i2\varphi} J_2(t) - e^{-i2\varphi} J_{-2}(t) \Big],$$

$$C(t) = \frac{i}{2} \Big[e^{i\varphi} J_1(t) - e^{-i\varphi} J_{-1}(t) \Big], \quad t = k\rho \sin \theta.$$

В этом случае на оптической оси (t=0) отличной от нуля будет только *х*-компонента вектора (6):

$$E_{x}(0,0,z) = -\frac{ikf}{2} \times$$

$$\propto \int_{0}^{\alpha} R(\theta)T(\theta)\sin\theta(\cos\theta+1)\exp(ikz\cos\theta)\,\mathrm{d}\theta.$$
(9)

Если же $\Omega_{R}(\phi) = \cos \phi$, тогда на оптической оси отличной от нуля будет только *z*-компонента:

$$E_{z}(0,0,z) = \frac{ikf}{2} \times$$

$$\times \int_{0}^{\alpha} R(\theta)T(\theta)\sin^{2}\theta \exp(ikz\cos\theta)\,\mathrm{d}\theta,$$
(10)

а при $\Omega_{R}(\phi) = \sin \phi$ будет чистый ноль в общей интенсивности электрического вектора

 $|E|^{2} = |E_{x}|^{2} + |E_{y}|^{2} + |E_{z}|^{2}.$

Если же $\Omega_{_{B}}(\phi) = \sin 2\phi$, тогда на оптической оси отличной от нуля будет только *у*-компонента:

$$E_{y}(0,0,z) = -\frac{ikf}{2} \times$$

$$\times \int_{0}^{\alpha} R(\theta)T(\theta)\sin\theta(1-\cos\theta)\exp(ikz\cos\theta)\,\mathrm{d}\theta.$$
(11)

Выражения в (9)-(11) при прочих равных условиях отличаются подынтегральными функциями: $1 + \cos \theta$ для *x*-компоненты, $\sin \theta$ для *z*-компоненты и $1 - \cos \theta$ для *y*-компоненты, соответственно. Очевидно, в диапазоне углов $\theta \in [0, \pi/2]$ суммарный вклад для *x*-компоненты будет больше, чем для *y*-компоненты.

На рис. 1 показан ход лучей при острой фокусировке линейно-поляризованного поля. При наличии бинарной фазы, меняющей направление векторов для половины лучей на противоположное, продольные компоненты будут складываться, а поперечные вычитаться.

Рис. 1. Действие бинарной фазовой функции пропускания высокоапертурной линзы при линейной поляризации

В табл. 1 приведены результаты численного моделирования для апланатического (свободного от сферической аберрации и комы) объектива с числовой апертурой $NA_{obj} \approx 0,99$. В этом случае используется функция аподизации зрачка $T(\theta) = \sqrt{\cos \theta}$ [28]. Красный и зеленый цвета соответствуют поперечным компонентам (*x* и *y*), а синий – продольной компоненте. В таблицах также приведены значения полной ширины по полуспаду интенсивности в горизонтальном направлении FWHM(–), площадь по полуспаду интенсивности н центральной точке фокальной плоскости I(0,0,0).

Как видно из табл. 1, введение линейной фазовой сингулярности приводит к исключению в центре фокальной области поперечных компонент и появлению продольной (кроме 3-ей строки), причем максимальное значение будет достигаться при перпендикулярном расположении сингулярной линии и направления поляризации.

Для дифракционных линз используется правило Гельмгольца и функция аподизации зрачка $T(\theta) = (1/\cos \theta)^{3/2}$ [5]. На основании сравнения функ-

ций аподизации зрачка для объектива и дифракционной линзы (рис. 2) в [5] было сделано предположение, что с помощью параболического зеркала или дифракционной линзы можно достичь более компактной фокусировки. Для параболического зеркала это предположение было подтверждено экспериментально [29].

Числовая апертура для дифракционных линз определяется по формуле:

$$NA_{dl} = \sin\left[\arctan\left(\frac{R}{f}\right)\right]n$$
, (11)

где R – радиус линзы, f – фокусное расстояние, n - показатель преломления оптической среды.

В табл. 2 приведены сравнительные результаты численного моделирования для апланатического объектива и дифракционной линзы с высокой числовой апертурой, имеющих функцию пропускания $B(\theta, \phi) = R(\theta)\Omega_{_B}(\phi)$, где $R(\theta) = 1$ и $\Omega_{_B}(\phi) = 1$ (первая строка), $\Omega_{_B}(\phi) = \arg(\cos \phi)$ (вторая строка) и $\Omega_{_B}(\phi) = \arg(\sin 2\phi)$ (третья строка). Показано продольное горизонтальное сечение интенсивности $|E|^2$ в области $z \in [-3\lambda, 3\lambda]$, $x \in [-1, 5\lambda, 1, 5\lambda]$ и поперечное сечение в фокальной плоскости $x, y \in [-1, 5\lambda, 1, 5\lambda]$.

Из табл. 2 видно, что с помощью дифракционной линзы с числовой апертурой NA = 0,99 действительно получается фокусировка в меньшее по площади фокальное пятно, чем для апланатического объектива с той же числовой апертурой. Также при дополнении фокусирующей системы функцией пропускания с фазовым скачком сильнее подавляются поперечные компоненты в центральной части и, следовательно, выделяется на оси продольная компонента. Это связано с резким увеличением функции аподизации зрачка при больших углах θ для дифракционной линзы, как показано на рис. 2.

Фазовая функция пропус- кания	Продольное горизонтальное распределение в плоскости $y=0$ ($x_{1,2}$) $z \in [-3\lambda, 3\lambda], x \in [-1, 5\lambda, 1, 5\lambda]$			Поперечное распределение в фокусе	FWHM(), HMA, I(0,0,0)
	$\left E_{x}\right ^{2}$	$\left E_{z} ight ^{2}$	$\left E\right ^{2}$	$ E ^2 (X \downarrow Y)$	
		=			$0,75\lambda$ $0,28\lambda^2$ 3,32
	H		×		$1,52\lambda$ $0,64\lambda^2$ 1,58
			۲		
			X	•	0,42λ (нет) 0,07

Таблица 1. Результаты моделирования для апланатического объектива с NA=0,99 при линейной х-поляризации, R(θ)=1

Таблица 2. Результаты моделирования для апланатического объектива и дифракционной линзы с числовой апертурой NA=0,99 при линейной х-поляризации, R(θ)=1

Фазовая	Апланатический объекти	В	Дифракционная линза		
функция пропус- кания	Продольное ($x_{4,z}$, y=0) и поперечное ($x_{4,y}$, z=0) распределения $ E ^2$	FWHM(), HMA, I(0,0,0)	Продольное ($x_{4,z}$, y=0) и поперечное ($x_{4,y}$, z=0) распределения $ E ^{2}$	FWHM(), HMA, I(0,0,0)	
		0,75λ 0,28λ ² 3,32		0,82λ 0,27λ ² 1,34	
		1,52λ 0,64λ ² 1,58		1,44λ 0,45λ ² 0,9	
	0,06 0,04 0,02 0 0,2 0,4 0,6	0,41λ (нет) 0,07	0,08 0,04 0 0,2 0,4 0,6	0,38λ (нет) 0,11	

Рис. 3. Результаты моделирования для дифракционной линзы с числовой апертурой NA=0,9987 при линейной х-поляризации, $B(\theta, \phi) = \arg(\cos \phi)$: продольное $({}^{X} \bigstar Z, y=0)$ (a) и поперечное $({}^{X} \bigstar Z, z=0)$ (б) распределения $|E|^2$, а также (в) сечение в фокальной плоскости вдоль оси х

Тем не менее, чтобы достаточно подавить поперечные компоненты (красный и зеленый цвет) вблизи оси с целью получения компактного центрального светового пятна, необходимо повысить числовую апертуру дифракционной линзы до NA = 0,9987 (рис. 3). При этом удается преодолеть дифракционный предел (HMA = 0,13 λ^2) для линзы (HMA = 0,2 λ^2), но не для бесселевого пучка (HMA = 0,1 λ^2). Значение интенсивности в центральном пятне при этом уменьшается почти в 8 раз по сравнению с апланатическим объективом в связи с удлинением продольного размера фокальной области и появлением боковых лепестков. Однако по сравнению с такой же дифракционной линзой, не имеющей каких-либо дополнений, потерь в энергии нет.

Шахматная бинарная фаза позволяет выделить у-компоненту в плоскости y=0 (по горизонтали FWHM(–)=0,38 λ), но ее энергия изначально слишком мала по сравнению с другими компонентами, поэтому значение интенсивности в центральной точке оказывается в 30 раз меньше, чем для фокального пятна объектива.

Однако, как будет показано ниже, при использовании узкой кольцевой щели в фокальной плоскости остается энергии значительно меньше.

Известно, что при радиальной поляризации падающего света уменьшить вклад поперечных компонент в фокальную область, а значит, уменьшить поперечный размер фокального пятна, можно либо введением узкой кольцевой диафрагмы, пропускающей только периферийные лучи [2, 4], либо с помощью кольцевых структур, как амплитуднофазовых [9], так и чисто фазовых [8, 12]. В последних случаях энергия в центральной зоне линзы не блокируется, а может быть перенаправлена из фокальной области в другую часть пространства так, чтобы сформировать в околофокальной области некоторое заданное трехмерное распределение [30, 31].

Как показано на рис. 4, за счет фазовой кольцевой структуры в центральной части линзы можно увеличить числовую апертуру и изменить наклон центральных лучей, перераспределяя тем самым вклад компонент векторного поля вдоль оптической оси.

Аналогичный подход был рассмотрен в скалярном случае в работе [32], где тандем из линзы и аксикона был представлен в виде дифракционных оптических элементов, фазовая функция которых пропорциональна радиальной координате в дробной степени.

В табл. 3 приведены сравнительные результаты моделирования ($z \in [-20\lambda, 20\lambda]$, $x, y \in [-1, 5\lambda, 1, 5\lambda]$) для апланатического объектива и дифракционной линзы с NA=0,99 с узкой кольцевой диафрагмой, аппроксимирующей функцию:

$$B_{\delta}(\theta,\phi) = \delta(\theta - \pi/2) \tag{12}$$

И

$$B_{\delta c}(\theta, \phi) = \delta(\theta - \pi/2) \cos \phi.$$
(13)

Как видно из табл. 3, наложение узкой кольцевой диафрагмы приводит к «вытягиванию» фокального пятна вдоль оптической оси, что соответствует формированию бесселевого пучка нулевого порядка для *х*-компоненты. Дополнительное введение фазового скачка позволяет получить такое распределение для *z*-компоненты.

В этом случае энергия почти равномерно распределяется на довольно протяженной области, поэтому в фокальной плоскости остается только соответствующая доля – интенсивность в центральном пятне в 1600 раз ниже, чем для объектива без диафрагмы. При использовании дифракционной линзы получаются приблизительно такие же результаты с той разницей, что глубина резкости (протяженность фокальной области) значительно больше и доля энергии в каждой плоскости пропорционально уменьшается.

В табл. 4 приведены результаты моделирования для высокоапертурной фокусирующей системы, имеющей «полукольцевую» функцию пропускания:

$$B1(\theta, \phi) = \arg \left[R1(\theta) \cos \phi \right] =$$

= $\arg \left[\cos \left(0, 01 k f \sin \theta \right) \cos \phi \right],$ (14)

$$B2(\theta, \phi) = \arg[R2(\theta)\cos\phi] =$$

= $\arg[GL_{3,0}((0,03kf\sin\theta)^2)\cos\phi],$ (15)

где $R2(\theta) = GL_{3,0}(t)$ – радиальная часть моды Лагерра-Гаусса [33].

Амплитудно-фазовые распределения, пропорциональные радиально-симметричным модам Лагерра-Гаусса, были использованы в работе [9] для радиальной поляризации.

Рис. 4. Изменение наклона лучей в центральной части линзы за счет фазовой кольцевой структуры

Как видно из табл. 4, с помощью бинарной фазовой аподизации можно добиться значительного уменьшения размера фокального пятна (HMA = $0,08\lambda^2$) без такой значительной потери энергии, как при использовании узкой кольцевой диафрагмы, хотя по сравнению с обычной острой фокусировкой интенсивность в центральном световом пятне уменьшается в 27 раз.

Данная ситуация находится в полном соответствии с теорией суперосциллирующих функций [34-36], когда уменьшение размера центрального пятна достигается за счет потери эффективности и роста боковых лепестков. Тем не менее, в определенных оптических приложениях такие потери не являются существенными, особенно по сравнению с диафрагмированием. Например, сканирующие микроскопы могут работать всего с несколькими фотонами, что на полтора десятка порядков меньше мощности обычного лазера.

<u>2. Круговая поляризация</u>

Круговая поляризация также является распространённым и простым в реализации типом поляризации. Получить круговую поляризацию из линейной можно с помощью четвертьволновой пластинки [37].

В [38, 12] было показано, что при использовании вихревых функций пропускания происходит компенсация «поляризационной сингулярности» [38], присутствующей в круговой поляризации, что позволяет получать осесимметричные распределения. Бинарная пропускающая функция соответствует суперпозиции двух вихревых функций с противоположными знаками, одна компенсирует поляризационную сингулярность, а вторая вносит фазовую сингулярность в соответствующие компоненты. Поэтому в фокальной области формируется минимум интенсивности при использовании бинарных функций пропускания.

<u>3. Радиальная поляризация</u>

При радиальной поляризации излучения, падающего на высокоапертурную фокусирующую систему, коэффициенты входной поляризации записываются как $a(\phi) = \cos \phi$, $b(\phi) = \sin \phi$, $c(\phi) = 0$, и матрица поляризации системы принимает вид:

$$\mathbf{P}(\theta, \phi) = \begin{bmatrix} \cos \phi \cos \theta \\ \sin \phi \cos \theta \\ -\sin \theta \end{bmatrix}.$$
 (16)

Тогда матрица $\mathbf{Q}(\rho, \phi, \theta)$ в (6) при отсутствии у функции пропускания (3) вихревых компонент $\Omega_B(\phi) = 1$ будет иметь вид:

$$\mathbf{Q}(\boldsymbol{\rho}, \boldsymbol{\varphi}, \boldsymbol{\theta}) = \begin{bmatrix} C(t)\cos\boldsymbol{\theta} \\ S(t)\cos\boldsymbol{\theta} \\ -J_0(t)\sin\boldsymbol{\theta} \end{bmatrix},$$
(17)

где

$$C(t) = \frac{i}{2} \Big[e^{i\phi} J_1(t) - e^{-i\phi} J_{-1}(t) \Big],$$

$$S(t) = \frac{1}{2} \Big[e^{i\phi} J_1(t) + e^{-i\phi} J_{-1}(t) \Big], \quad t = k\rho \sin \theta.$$

В этом случае на оптической оси (t = 0) отличной от нуля будет только *z*-компонента вектора (6), полностью соответствующая выражению (10), но с коэффициентом 2, т.е. интенсивность продольной компоненты будет в 4 раза выше, чем для линейной поляризации.

Тем не менее, только с помощью радиальной поляризации преодолеть дифракционный предел невозможно, в этом случае FWHM = $0,54\lambda$.

Использование узкой кольцевой диафрагмы позволяет сформировать в фокальной области протяженный бесселевый пучок с ожидаемой FWHM=0,37 λ и низкой интенсивностью (в 375 раз ниже, чем в фокальном пятне). Применение же полноапертурных бинарных фазовых кольцевых структур позволяет существенно уменьшить размер центрального светового пятна с гораздо меньшей потерей энергии – FWHM=0,33 λ при уменьшении энергии примерно в 8 раз по сравнению с обычным объективом.

Билинза (линза с линейным фазовым скачком), соответственно, будет увеличивать в центральной части вклад поперечных компонент, но более эффективно в этом случае использовать азимутальную поляризацию.

Как видно из табл. 5, в соответствии с выводами работы [12], использование в качестве пропускающей функции аксиконов и других кольцевых фазовых структур, например, радиальной части выражений (14) и (15), позволяет увеличить числовую апертуру линзы в ее центральной части и направить центральные лучи во внефокальную область. Таким образом, в фокусе останется только продольная компонента, а центральные лучи не просто блокируются, а могут быть отклонены так, чтобы сформировать некоторое заданное распределение интенсивности вокруг фокуса (например, «оптические бутылки»).

Заметим, что блокирование центральных лучей [2, 4] позволяет только выделить продольную компоненту и получить распределение интенсивности, пропорциональное функции Бесселя нулевого порядка (FWHM=0,36 λ). А с помощью дополнительной кольцевой фазовой структуры можно получить центральное световое пятно меньшего размера (FWHM=0,33 λ), хотя, как и в линейной поляризации, за счет соответствующего уменьшения энергии в этом пятне. Таблица 3. Результаты моделирования для апланатического объектива и дифракционной линзы с числовой апертурой NA=0,99 при линейной х-поляризации $z \in [-20\lambda, 20\lambda], x, y \in [-1, 5\lambda, 1, 5\lambda]$

Таблица 4. Результаты моделирования для апланатического объектива с NA=0,99, дополненного фазовой полукольцевой структурой, при линейной х-поляризации $z \in [-3\lambda, 3\lambda]$, $x, y \in [-1, 5\lambda, 1, 5\lambda]$

	Функция пропус- кания	Продольное распределение $ E ^2$ (<i>x</i> , y=0)	Поперечное $ E ^2$ (^X y , z=0)	Сечение $ E ^2$ вдоль оси <i>х</i> в фокальной плоскости	FWHM(), HMA, I(0,0,0)
$B1(\theta,\phi)$	\bigcirc	H.	(2)	0,16 0,12 0,08 0,04 0 0,2 0,4 0,6	$0,32\lambda$ $0,08\lambda^2$ 0,12
$B2(\theta,\phi)$	\bigcirc	H		0,18 0,12 0,06 0 0,2 0,4 0,6	$0,28\lambda$ $0,13\lambda^2$ 0,019

4. Азимутальная поляризация

В случае азимутальной поляризации входного поля коэффициенты записываются как $a(\phi) = \sin \phi$, $b(\phi) = -\cos \phi$, $c(\phi) = 0$, и матрица поляризации системы имеет вид:

$$\mathbf{P}(\theta, \phi) = \begin{bmatrix} \sin \phi \\ -\cos \phi \\ 0 \end{bmatrix}, \tag{18}$$

т.е. продольная составляющая всегда отсутствует.

Вертикальная и горизонтальная бинарные асимметричные структуры будут выделять на оптической оси соответственно *x*- или *y*-компоненту с максимально достижимым значением интенсивности. Действие билинзы в случае азимутальной поляризации кардинально отличается от результата с линейной поляризацией. В рассматриваемом случае (табл. 6) вращение билинзы приводит лишь к вращению картины общей интенсивности (хотя вклад компонент в осевой точке при этом меняется).

Дополнение линзы функциями вида (14) и (15) приводит к возникновению на оси ненулевых значений поперечных компонент (продольная компонента в азимутальной поляризации отсутствует), причем субволновая локализация получается минимальной из рассмотренных вариантов поляризации – HMA=0,054λ². Интенсивность в центральном пятне в этом случае будет в 40 раз меньше, чем интенсивность фокального пятна, формируемого введением фазового скачка.

Положительным моментом для осесимметричных поляризаций (радиальной и азимутальной) является независимость распределения общей интенсивности от поворота асимметричной бинарной структуры.

Заключение

В работе на основе векторной модели высокоапертурного объектива в приближении Дебая показана возможность использования бинарных фазовых структур для управления вкладом компонент векторного электрического поля на оптической оси при различных поляризациях падающего на фокусирующую систему излучения.

В частности, введение линейного фазового скачка перпендикулярно направлению линейной поляризации приводит к исключению в центре фокальной области поперечных компонент и появлению продольной.

Такое управление позволяет формировать в фокальной области центральное световое пятно, площадь которого значительно меньше дифракционного предела, равного HMA = $0,2\lambda^2$.

	Функция пропус- кания	Продольная интенсивность	Поперечная интенсив- ность	Сечение поперечной интенсивности вдоль оси <i>х</i>	FWHM, HMA, I(0,0,0)
$R(\theta)=1$		\mathbf{x}	۲		$0,54\lambda \\ 0,232\lambda^2 \\ 2,4$
$R_{\delta}(\theta)=\delta(\theta-\pi/2)$			\bigcirc	0,006 0,004 0,002 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7	$0,37\lambda$ $0,106\lambda^2$ 0,0065
R1(θ)	0		0	0,3 0,2 0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7	$0,33\lambda \\ 0,084\lambda^2 \\ 0,31$
R2(θ)	0	-	\bigcirc	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0,37\lambda$ $0,107\lambda^2$ 0,46

Таблица 5. Результаты моделирования для апланатического объектива с NA=0,99 при радиальной поляризации

Таблица 6. Результаты моделирования для апланатического объектива с NA=0,99 при азимутальной поляризации

	Функция пропус- кания	Продольная интенсивность	Поперечная интенсив- ность	Сечение поперечной интенсивности	FWHM(), HMA, I(0,0,0)
		х	0	1,0 0,5 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7	
$R(\theta)=1$			8	2 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7	$0,42\lambda \\ 0,234\lambda^2 \\ 2,1$
			.00	2 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7	$0,61\lambda \\ 0,234\lambda^2 \\ 2,1$
$B1(\theta,\phi)$			\bigcirc	0,18 0,12 0,06 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7	$0,22\lambda \\ 0,054\lambda^2 \\ 0,05$
$B2(\theta,\phi)$	$\textcircled{\ }$		\odot	0,18 0,12 0,06 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7	$0,31\lambda \\ 0,111\lambda^2 \\ 0,19$

Применение фазовых кольцевых структур позволяет уменьшить площадь центрального светового пятна вплоть до FWHM = $0,33\lambda$ (HMA = $0,084\lambda^2$) с эффективностью 13% для радиальной поляризации.

Асимметричные бинарные фазовые структуры можно использовать для уменьшения площади центрального светового пятна для линейной поляризации – $HMA = 0.08\lambda^2$ с эффективностью 3,6% и азимутальной поляризации – $HMA = 0.054\lambda^2$ с эффективностью 2,4%.

Таким образом, уменьшение размера центрального пятна достигается за счет потери эффективности и роста боковых лепестков. Однако эти потери на порядок меньше, чем при использовании узких кольцевых диафрагм. Кроме того, энергия центральной зоны линзы может быть использована для формирования некоторого заданного трехмерного распределения в области, близкой к фокусу, или достаточно удаленной от него. В последнем случае удобнее использовать дифракционные линзы.

Рассмотренные возможности могут быть полезны в области оптического манипулирования микрочастицами. Также, различные компоненты векторного электромагнитного могут быть использованы для трехмерно-ориентированного возбуждения флуоресцирующих молекул [39].

Благодарности

Работа выполнена при поддержке российско-американской программы «Фундаментальные исследования и высшее образование» (грант CRDF PG08-014-1), грантов РФФИ 10-07-00109-а, 10-07-00438-а и гранта Президента РФ поддержки ведущих научных школ НШ-7414.2010.

Литература

- Karman, G.P. Airy pattern reorganization and subwavelength structure in a focus / G. P. Karman, M. W. Beijersbergen, A. van Duijl, D. Bouwmeester and J. P. Woerdman // J. Opt. Soc. Am. A. – 1998. – V. 15.– 4. – P. 884-899.
- Quabis, S. Focusing light to a tighter spot / S. Quabis, R. Dorn, M. Eberler, O. Glockl and G. Leuchs // Opt. Commun. – 2000. – V. 179. – P. 1-7.
- Kant, R. Superresolution and increased depth of focus: an inverse problem of vector diffraction / Rishi Kant // J. Mod. Opt. – 2000. – V. 47 – 5. – P. 905-916.
- Dorn, R. Sharper focus for a radially polarized light beam, / R. Dorn, S. Quabis and G. Leuchs // Phys. Rev. Lett. – 2003. – V. 91. – P. 233901.
- Davidson, N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens / Nir Davidson, Nándor Bokor // Opt. Lett. – 2004. –V. 29. – 12. – P. 1318-1320.
- Sheppard, Colin J.R. Annular pupils, radial polarization, and superresolution / Colin J.R. Sheppard and Amarjyoti Choudhury // Appl. Opt. – 2004. – V. 43. – 22. – P. 4322-4327.
- Pereira, S.F. Superresolution by means of polarisation, phase and amplitude pupil masks / S.F. Pereira, A.S. van de Nes // Opt. Commun. – 2004. – Vol. 234. – P. 119-124.
- Wang, H. Creation of a needle of longitudinally polarized light in vacuum using binary optics / Haifeng Wang, Luping

Shi, Boris Lukyanchuk, Colin Sheppard and Chong Tow Chong // Nature Photonics. – 2008. –Vol. 2. – P. 501-505.

- Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa and S. Sato // J. Opt. Soc. Am. A. – 2007. – V. 24. – P. 1793-1798.
- Lerman, Gilad M. Effect of radial polarization and apodization on spot size under tight focusing conditions / Gilad M. Lerman and Uriel Levy // Opt. Express. – 2008. – Vol. 16, No. 7. – P. 4567-4581.
- Kalosha, V. P. Toward the subdiffraction focusing limit of optical superresolution / V. P. Kalosha and I. Golub // Opt. Lett.- 2007. – Vol. 32. – P. 3540-3542.
- Хонина, С.Н., Волотовский, С.Г. Полноапертурное векторное формирование продольного поля с помощью линзакона: І. Острая фокусировка в приближении Дебая (представлено в «Компьютерную оптику»).
- Kozawa, Yu. Generation of a radially polarized laser beam by use of a conical Brewster prism / Yuichi Kozawa and Shunichi Sato // Opt. Lett. – 2005. – V. 30(22). – P. 3063-3065.
- 14. Низьев, В.Г. Генерация поляризационно-неоднородных мод в мощном CO₂ лазере / В.Г. Низьев, В.П. Якунин, Н.Г. Туркин // Квантовая электроника. – 2009. – № 39(6). – С. 505-514.
- Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings / Ze'ev Bomzon, Gabriel Biener, Vladimir Kleiner, and Erez Hasman // Opt. Lett. – 2002. – V. 27(5). – P. 285-287.
- Yonezawa, K. Compact Laser with Radial Polarization Using Birefringent Laser Medium, Jpn. / K. Yonezawa, Y. Kozawa, and S. Sato // J. Appl. Phys. – 2007. – V. 46(8A). – P. 5160–5163.
- Tidwell, S.C. Generating radially polarized beams interferometrically / S.C. Tidwell, D.H. Ford, and W.D. Kimura // Applied Optics. – 1990. – V. 29. – P. 2234–2239.
- Simple interferometric technique for generation of a radially polarized light beam / Nicolas Passilly, Renaud de Saint Denis, and Kamel Aït-Ameur, François Treussart, Rolland Hierle, and Jean-François Roch // J. Opt. Soc. Am. A. – 2005. – V. 22(5). – P. 984-991.
- Volpe, G. Generation of cylindrical vector beams with fewmode fibers excited by Laguerre–Gaussian beams / G. Volpe, D. Petrov // Opt. Comm. – 2004. – V. 237. – P. 89-95.
- 20. Niv, A. Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings / A. Niv, G. Biener, V. Kleiner, and E. Hasman // Opt. Lett. 2003. Vol. 28, No. 7. P. 510-512.
- 21. Карпеев, С.В. Оптическая схема для универсальной генерации и конверсии поляризационно-неоднородного лазерного излучения с использованием ДОЭ / С.В. Карпеев, С.Н. Хонина // Компьютерная оптика. – 2009. – Т. 33, №3. – С. 261-267.
- 22. Zhou, Z. Achromatic generation of radially polarized beams in visible range using segmented subwavelength metal wire gratings / Z. Zhou, Q. Tan, Q. Li, and G. Jin // Opt. Lett. –2009. – Vol. 34, No. 21. – 3361-3363.
- Балалаев, С.А., Хонина, С.Н., Скиданов, Р.В. Исследование возможности формирования гипергеометрических лазерных пучков методами дифракционной оптики // Известия Самарского научного центра РАН. 2008. № 10(3). С. 694-706.
- Khonina, S.N. Generation of rotating Gauss-Laguerre modes with binary-phase diffractive optics / S.N. Khonina, V.V. Kotlyar, V.A. Soifer, M. Honkanen, J. Lautanen, J. Turunen // Journal of Modern Optics. – 1999. – V. 46(2). – P. 227-238.

- Khonina, S.N. Encoded binary diffractive element to form hyper-geometric laser beams / S.N. Khonina, S.A. Balalayev, R.V. Skidanov, V.V. Kotlyar, B. Paivanranta, J. Turunen // J. Opt. A: Pure Appl. Opt. – 2009. – V. 11. – P. 065702-065709.
- 26. Grosjean, T., Courjon, D. Photopolymers as vectorial sensors of the electric field // Opt. Express. – 2006. – Vol. 14, No. 6. – P. 2203-2210.
- Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system / B. Richards and E. Wolf // Proc. Royal Soc. A. – 1959. – Vol. 253. – P. 358–379.
- Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications / Qiwen Zhan // Advances in Optics and Photonics. – 2009. – V. 1. – P. 1-57.
- 29. Tighter focusing with a parabolic mirror / J. Stadler, C. Stanciu, C. Stupperich, and A.J. Meixner // Opt. Lett. – 2008. – Vol. 33, No. 7. – P. 681-683.
- Chen, W. Three-dimensional focus shaping with cylindrical vector beams / W. Chen, Q. Zhan// Opt. Commun. – 2006. – Vol. 265. – P. 411-417.
- Focusing properties of concentric piecewise cylindrical vector beam / X. Gao, J. Wang, H. Gu, W. Xu // Optik. – 2007. – Vol. 118. – P. 257–265.
- 32. Хонина, С.Н. Фраксикон дифракционный оптический элемент с конической фокальной областью / С.Н. Хонина, С.Г. Волотовский // Компьютерная оптика. – 2009. – Т. 33, № 4. – С. 401-411. – ISSN 0134-2452.
- Abramowitz, M. Handbook of Mathematical Functions / M. Abramowitz and I.A. Stegun – Courier Dover Publications, 1972. – 1046 p.
- Berry, M.V. Evolution of quantum superoscillations and optical superresolution without evanescent waves / M.V. Berry and S. Popescu // J. Phys. A: Math. Gen. – 2006. – V. 39. – P. 6965–6977.
- Ferreira, P.J.S.G. Superoscillations: faster than the Nyquist rate / P.J.S.G. Ferreira, and A. Kempf // IEEE transactions on signal processing – 2006. – V. 54, No. 10. – P. 3732-3740.
- Huang, F.M. Super-Resolution without Evanescent Waves / F.M. Huang and N.I. Zheludev // NANO LETTERS. – 2009. – V. 9, No. 3. – P. 1249-1254.
- 37. Ландсберг, Г.С. Оптика. учеб. пособие, 6-е изд. М.: Физматлит, 2003. – 848 с.
- Zhan, Q. Properties of circularly polarized vortex beams, Opt. Lett. – 2006. – Vol. 31, No. 7. – P. 867-869.
- Probing single molecule dynamics / X.S. Xie and R.C. Dunn // Science. – 1994. – Vol. 265. – P. 361–364.

References

- Karman, G.P. Airy pattern reorganization and subwavelength structure in a focus / G. P. Karman, M. W. Beijersbergen, A. van Duijl, D. Bouwmeester and J. P. Woerdman // J. Opt. Soc. Am. A. – 1998. – Vol. 15, No. 4. – P. 884-899.
- Quabis, S. Focusing light to a tighter spot / S. Quabis, R. Dorn, M. Eberler, O. Glockl and G. Leuchs // Opt. Commun. – 2000. – V. 179. – P. 1–7.
- Kant, R. Superresolution and increased depth of focus: an inverse problem of vector diffraction / Rishi Kant // J. Mod. Opt. – 2000. –Vol. 47, N. 5. – P. 905-916.
- Dorn, R. Sharper focus for a radially polarized light beam, / R. Dorn, S. Quabis and G. Leuchs // Phys. Rev. Lett. – 2003. – V.91. – P.233901.
- Davidson, N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror

and a flat diffractive lens / Nir Davidson, Nándor Bokor // Opt. Lett. – 2004. –Vol. 29, No. 12. – P. 1318-1320.

- Sheppard, Colin J.R. Annular pupils, radial polarization, and superresolution / Colin J.R. Sheppard and Amarjyoti Choudhury // Appl. Opt. – 2004. – Vol. 43, No. 22. – P. 4322-4327.
- Pereira, S.F. Superresolution by means of polarisation, phase and amplitude pupil masks / S.F. Pereira, A.S. van de Nes // Opt. Commun. – 2004. – Vol. 234. – P. 119-124.
- Wang, H. Creation of a needle of longitudinally polarized light in vacuum using binary optics, / Haifeng Wang, Luping Shi, Boris Lukyanchuk, Colin Sheppard and Chong Tow Chong // Nature Photonics. – 2008. –Vol. 2. – P. 501-505.
- Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa and S. Sato // J. Opt. Soc. Am. A. – 2007. – V. 24. – P. 1793-1798.
- Lerman, Gilad M. Effect of radial polarization and apodization on spot size under tight focusing conditions / Gilad M. Lerman and Uriel Levy // Opt. Express. – 2008. – Vol. 16, No. 7. – P. 4567-4581.
- Kalosha, V. P. Toward the subdiffraction focusing limit of optical superresolution / V. P. Kalosha and I. Golub // Opt. Lett.- 2007. – Vol. 32. – P. 3540-3542.
- Khonina, S.N. Full-aperture vector forming of the longitudinal field by lensacon: I. Sharp focusing in Debye approximation / S.N. Khonina, S.G. Volotovsky // (submitted in Computer Optics). – (in Russian).
- Kozawa, Yu. Generation of a radially polarized laser beam by use of a conical Brewster prism / Yuichi Kozawa and Shunichi Sato // Opt. Lett. – 2005. – V.30(22). – P.3063-3065.
- V.G. Niziev, V.P. Yakunin, N.G. Turkin, Generation of nonuniform polarized modes in the powerful CO2-laser, Quantum Electronics, 39(6) 505-514 (2009) – (in Russian).
- Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings / Ze'ev Bomzon, Gabriel Biener, Vladimir Kleiner, and Erez Hasman // Opt. Lett. – 2002. – V.27(5). – P.285-287.
- Yonezawa, K. Compact Laser with Radial Polarization Using Birefringent Laser Medium, Jpn. / K. Yonezawa, Y. Kozawa, and S. Sato // J. Appl. Phys. – 2007. – V. 46(8A). – P. 5160–5163.
- Tidwell, S.C. Generating radially polarized beams interferometrically / S.C. Tidwell, D.H. Ford, and W.D. Kimura // Applied Optics. – 1990. – V. 29. – P. 2234–2239.
- Simple interferometric technique for generation of a radially polarized light beam / Nicolas Passilly, Renaud de Saint Denis, and Kamel Aït-Ameur, François Treussart, Rolland Hierle, and Jean-François Roch // J. Opt. Soc. Am. A. – 2005. – V. 22(5). – P. 984-991.
- Volpe, G. Generation of cylindrical vector beams with fewmode fibers excited by Laguerre–Gaussian beams / G. Volpe, D. Petrov // Opt. Comm. – 2004. – V. 237. – P. 89–95.
- 20. Niv, A. Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings / A. Niv, G. Biener, V. Kleiner, and E. Hasman // Opt. Lett. 2003. Vol. 28, No. 7. P. 510-512.
- Karpeev, S.V. The optical scheme for universal generation and conversion of nonuniform polarized laser beams by means of DOES / S.V. Karpeev, S.N. Khonina // Computer Optics. – 2009. – Vol. 33, No. 3. – P. 261-267. – (in Russian).
- 22. Zhou, Z. Achromatic generation of radially polarized beams in visible range using segmented subwavelength metal wire gratings / Z. Zhou, Q. Tan, Q. Li, and G. Jin // Opt. Lett. –2009. – Vol. 34, No. 21. – 3361-3363.

- S.A. Balalayev, S.N. Khonina, R.V. Skidanov, Examination of possibility to form hypergeometric laser beams by means of diffractive optics, Izvest. SNC RAS; -2008. -10(3), 694-706. – (in Russian).
- Khonina, S.N. Generation of rotating Gauss-Laguerre modes with binary-phase diffractive optics / S.N. Khonina, V.V. Kotlyar, V.A. Soifer, M. Honkanen, J. Lautanen, J. Turunen // Journal of Modern Optics. – 1999. – V. 46(2). – P. 227-238.
- Khonina, S.N. Encoded binary diffractive element to form hyper-geometric laser beams / S.N. Khonina, S.A. Balalayev, R.V. Skidanov, V.V. Kotlyar, B. Paivanranta, J. Turunen // J. Opt. A: Pure Appl. Opt. – 2009. – V. 11. – P. 065702-065709.
- 26. Grosjean, T., Courjon, D. Photopolymers as vectorial sensors of the electric field // Opt. Express. – 2006. – Vol. 14, No. 6. – P. 2203-2210.
- Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system / B. Richards and E. Wolf // Proc. Royal Soc. A. – 1959. – Vol. 253. – P. 358–379.
- Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications / Qiwen Zhan // Advances in Optics and Photonics. – 2009. – V. 1. – P. 1-57.
- 29. Tighter focusing with a parabolic mirror / J. Stadler, C. Stanciu, C. Stupperich, and A.J. Meixner // Opt. Lett. – 2008. – Vol. 33, No. 7. – P. 681-683.
- Chen, W. Three-dimensional focus shaping with cylindrical vector beams / W. Chen, Q. Zhan // Opt. Commun. – 2006. – Vol. 265. – P. 411-417.

- Focusing properties of concentric piecewise cylindrical vector beam / X. Gao, J. Wang, H. Gu, W. Xu // Optik. – 2007. – Vol. 118. – P. 257–265.
- 32. Khonina, S.N. Fraxicon diffractive optical element with conical focal domain / S.N. Khonina, S.G. Volotovsky // Computer Optics. – 2009. – Vol. 33, No 4. – P. 401-411. – ISSN 0134-2452. – (in Russian).
- Abramowitz, M. Handbook of Mathematical Functions / M. Abramowitz and I.A. Stegun. – Courier Dover Publications, 1972. – 1046 p.
- 34. Berry, M.V. Evolution of quantum superoscillations and optical superresolution without evanescent waves / M.V. Berry and S. Popescu // J. Phys. A: Math. Gen. – 2006. – V. 39. – P. 6965–6977.
- Ferreira, P.J.S.G. Superoscillations: faster than the Nyquist rate / P.J.S.G. Ferreira, A. Kempf // IEEE transactions on signal processing – 2006. – V. 54, No. 10. – P. 3732-3740.
- Huang, F.M. Super-Resolution without Evanescent Waves / F.M. Huang and N.I. Zheludev // NANO LETTERS. – 2009. – V. 9, No. 3. – P. 1249-1254.
- 37. Landsberg, G.S. Optics. 6 ed. Moscow: Fismatlit, 2003.
 848 p. (in Russian).
- Zhan, Q. Properties of circularly polarized vortex beams, Opt. Lett. - 2006. - Vol. 31, No. 7. - P. 867-869.
- Probing single molecule dynamics / X.S. Xie and R.C. Dunn // Science. – 1994. – Vol. 265. – P. 361– 364.

CONTROL BY CONTRIBUTION OF COMPONENTS OF VECTOR ELECTRIC FIELD IN FOCUS OF A HIGH-APERTURE LENS BY MEANS OF BINARY PHASE STRUCTURES

Svetlana Nikolaevna Khonina^{1,2} (leading researcher, professor, e-mail: <u>khonina@smr.ru</u>), Sergey Gennadjevich Volotovsky¹ (leading programmer, e-mail <u>sv@smr.ru</u>) ¹Institution of Russian Academy of Sciences, Image Processing Systems Institute RAS, ²S.P. Korolyov Samara State Aerospace University

Abstract

Possibility of control by the contribution of components of vector electric field in focal area by means of binary phase structures for the purpose of reduction of the cross-section size of the central light spot of focusing system with the high numerical aperture is shown. By analysis of a matrix of polarizing transformation of a high-aperture lens and numerical modeling of focusing system in Debay approach efficiency of use full-aperture asymmetric binary distributions for formation of a subwavelength central spot is shown: half-maximum-area (HMA) $0.08\lambda^2$ with efficiency of 3.6% for linearly polarized beam, $0,084\lambda^2$ with efficiency of 13% for radially polarized beam and $0.054\lambda^2$ with efficiency of 2.4% for azimuthally polarized beam.

Key words: sharp focusing, size of a focal spot, binary phase diffractive optical element.

В редакцию поступила 14.01.2010 г.