АВТОМОДУЛЯЦИЯ ОДНОМЕРНЫХ ВОЛН НА ОСНОВЕ НЕЛИНЕЙНОГО УРАВНЕНИЯ ШРЁДИНГЕРА С ПРОИЗВОЛЬНОЙ НЕЛИНЕЙНОСТЬЮ

Алименков И.В.

Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет)

Аннотация

Найдено в квадратурах решение обобщённого нелинейного уравнения Шрёдингера с произвольной нелинейностью, характеризующейся некоторой функцией нелинейного отклика среды на внешнее гармоническое возмущение, зависящей от интенсивности волнового поля.

<u>Ключевые слова:</u> обобщённое нелинейное уравнение Шрёдингера, произвольная функция нелинейного отклика на гармоническое внешнее возмущение, точное решение в квадратурах, солитонные решения.

Введение

Обобщённое нелинейное уравнение Шрёдингера (НУШ) [1] имеет вид

$$i\partial \psi / \partial t + \partial^2 \psi / \partial x^2 + g(I)\psi = 0, \tag{1}$$

где $I = |\psi|^2$ — интенсивность поля, g(I) — функция, характеризующая нелинейный отклик среды на внешнее гармоническое возмущение, причём g(0) = 0, а при больших интенсивностях функция отклика стремится к постоянному значению [1]. Это уравнение описывает эволюцию комплексной огибающей несущей монохроматической волны в нелинейной среде. Оно записано в безразмерном виде, и быстрые пространственно-временные осцилляции уже отделены.

Разложение g(I) в степенной ряд имеет вид

$$g(I) = \mu_1 I + \mu_2 I^2 + \mu_3 I^3 + \cdots$$

При малых значениях интенсивности I можно ограничиться несколькими первыми членами разложения. Если $g(I)\cong\mu_1I$, то нелинейный отклик называется керровским и уравнение (1) имеет кубическую нелинейность. Этот случай детально исследован многими авторами. Наиболее полное изложение приведено в [2]. Если g(I), рассматриваемая как функция на всей числовой оси, имеет экстремум в нуле (некерровский отклик), то $g(I)\cong\mu_2I^2$ и уравнение (1) имеет нелинейность пятой степени. Солитонное решение для этого случая найдено в [3]. Если же $g(I)\cong\mu_1I+\mu_2I^2$ (нелинейный отклик смешанного типа), то уравнение (1) характеризуется нелинейностью типа кубик-квинтик и его солитонное решение найдено в [4].

В данной работе не предполагается разложение функции g(I) в ряд, а будет получено решение уравнения для интенсивности I в квадратурах.

Основной формализм

Подставляя в (1) выражение $\psi = \sqrt{I} \exp \left\{ i \left(qx \right) \right\}$, где q — поправка к центральному волновому числу, получим следующую систему уравнений для интенсивности:

$$\frac{\partial I}{\partial t} + 2q \frac{\partial I}{\partial x} = 0 ; (2)$$

$$2I\frac{\partial^2 I}{\partial x^2} - \left(\frac{\partial I}{\partial x}\right)^2 = 4q^2 I^2 - 4g(I)I^2.$$
 (3)

Уравнение (2), будучи линейным однородным уравнением первого порядка [6], имеет своим общим решением *пюбую* дифференцируемую сложную функцию I = I(s(x,t)), где s(x,t) — левая часть первого интеграла уравнения характеристик, имеющая вид

$$s = x - x_0 - 2qt . (4)$$

Так как
$$\frac{\partial I}{\partial x} = \frac{dI}{ds} \cdot \frac{\partial s}{\partial x} = \frac{dI(s)}{ds}$$
, то уравнение (3)

превращается в обыкновенное дифференциальное уравнение

$$2I\frac{d^2I}{ds^2} - \left(\frac{dI}{ds}\right)^2 = 4q^2I^2 - 4g(I)I^2.$$
 (5)

Несложно проверить, что (5) следует из нормальной системы гамильтоновых уравнений

$$\frac{dI}{ds} = \frac{\partial H}{\partial P},\tag{6}$$

$$\frac{dP}{ds} = -\frac{\partial H}{\partial I} \tag{7}$$

с функцией Гамильтона

$$H = \left(4P^2 - q^2\right)\frac{I}{2} + \frac{1}{2}G(I), \qquad (8)$$

где G(I) – первообразная для функции g(I), т.е.

$$G(I) = \int g(I)dI \ . \tag{9}$$

Таким образом, для уравнения (5) существует частица—аналог, подчиняющаяся классическим уравнениям динамики. Иными словами, (5) является уравнением Эйлера—Лагранжа для механической частицы-аналога.

Хорошо известно [5], [6], что решения I(s), асимптотически стремящиеся к нулю на бесконечности, существуют (если они существуют) при нулевой энергии механической частицы-аналога, т.е. при H=0. Из (6) с учётом (8) получим dI/ds=4IP, откуда $P=\left(dI/ds\right)/4I$. Подставляя это выражение в (8) и приравнивая результат к нулю, находим

$$\frac{dI}{ds} = \sqrt{4I^2q^2 - 4IG(I)} \ .$$

Интегрируя последнее выражение, получим решение уравнения (5) в квадратурах:

$$\frac{1}{2} \int \frac{dI}{\sqrt{q^2 I^2 - IG(I)}} = s \ . \tag{10}$$

Аддитивная произвольная постоянная в (10) включена в постоянную x_0 , входящую в правую часть (10).

Формула (10) является основным результатом данной работы. Она в неявной форме определяет решение $I = I\left(x-x_0-2qt\right)$, представляющее собой локализованный импульс, движущийся с постоянной скоростью.

Применим формулу (10) к различным случаям.

Для случая керровской нелинейности $g(I)=\mu_1 I$. Тогда $G(I)=\mu_1 I^2/2$. Полагая для удобства $\mu_1=2\mu$, из формулы (10) получим

$$\frac{1}{2} \int \frac{dI}{I\sqrt{q^2 - \mu I}} = s .$$

Вычисляя интеграл [7] в левой части, имеем

$$-\frac{1}{|q|}Arth\frac{\sqrt{q^2-\mu I}}{|q|}=s.$$

Обращая это выражение, находим

$$I = \frac{q^2 / \mu}{ch^2(qs)}.$$

Обозначим, как это принято, $q^2 / \mu = A^2$. Тогда

$$I = A^2 / ch^2 \left(\sqrt{\mu} As \right),$$

что в точности совпадает с известным [2] результатом. A^2 имеет физический смысл пикового значения безразмерной интенсивности импульса.

Для случая некерровской нелинейности $g(I) = \mu_2 I^2$. Тогда $G(I) = \mu_2 I^3 / 3$. Полагая для удобства $\mu_2 = 3\mu$, из формулы (10) получим

$$\frac{1}{2}\int \frac{dI}{I\sqrt{a^2-\mu I^2}} = s.$$

Вычисляя интеграл в левой части, имеем

$$-\frac{1}{2|q|}Arch\left|\frac{q/\sqrt{\mu}}{I}\right| = s.$$

Отсюла

$$I = \frac{|q|/\sqrt{\mu}}{ch(2|q|s)}.$$

Обозначая, как обычно, $\left| q \right| / \sqrt{\mu} = A^2$, окончательно получим

$$I = \frac{A^2}{ch(2\sqrt{\mu}A^2s)},$$

что совпадает с результатом, найденным в [3].

Совершенно аналогично рассматривается и нелинейный отклик смешанного типа $g(I) = \mu_1 I + \mu_2 I^2$, что приводит к результату, найденному в [4].

Заключение

Таким образом, найденная в данной работе квадратура (10), определяющая в неявном виде точное решение обобщённого НУШ в форме ло-кализованного импульса, содержит в себе как частные случаи все известные результаты. Эта статья является обобщающей по отношению к работам [3] и [4], что и побудило автора сохранить общность заголовков.

Литература

- 1. **Кившарь, Ю.С.** Оптические солитоны. От волоконных световодов к фотонным кристаллам / Ю.С. Кившарь, Г.П. Агравал. М.: Физматлит. 2005. 648с.
- Тахтаджян, Л.А. Гамильтонов подход в теории солитонов / Л.А. Тахтаджян, Л.Д. Фаддеев. М.: Наука. 1986. 528с.
- Алименков, И.В. Автомодуляция одномерных волн на основе нелинейного уравнения Шрёдингера с некерровской нелинейностью // Компьютерная оптика. – 2009. – Т. 33. – Вып. 3. – С. 240-242.
- 4. **Алименков, И.В.** Автомодуляция одномерных волн на основе нелинейного уравнения Шрёдингера с нелинейностью типа кубик-квинтик// Компьютерная оптика. 2012. Т. 36. Вып. 1. С. 34-35.
- 5. **Раджараман, Р.** Солитоны и инстантоны в квантовой теории поля. М.: Мир. 1985. 416с.
- Степанов, В.В., Курс дифференциальных уравнений. – М.: ГИТТЛ. – 1953. – 468с.
- 7. **Двайт, Г.Б.** Таблицы интегралов и другие математические формулы. М.: Наука. 1977. 224с.

References

- 1. **Kivshar, Y.S.** Optical solitons. From Fibers to Photonic Grystals / Y.S. Kivshar, G.P. Agrawal Moscow: "Fizmatlit' Publisher, 2005. 648p. (In Russian).
- Takhtajan, L.A. Hamilton approach in theory of solitons / L.A. Takhtajan, L.D. Faddeev. – Moscow: "Nauka" Publisher, 1986, – 528p. – (In Russian).
- Alimenkov, I.V. Automodulation of one-dimensional waves based on nonlinear Shredinger equation with non kerr nonlianerity // Computer Optics. – 2009. – Vol. 33, No.3. – P. 240-242. – (in Russian).
- Alimenkov, I.V. Automodulation of one-dimensional waves based on nonlinear Shredinger equation with nonlianerity cubic-quintic type // Computer Optics. – 2012. – Vol. 36, No.1. – P. 34-35. – (in Russian).
- Rajaraman, R. Solitons and instantons in quantum field theory. – Moscow: "Mir" Publisher, 1985. – 416 p. – (In Russian).
- 6. **Stepanov V.V.** Course of differential equations. Moscow: "GITTL" Publisher, 1953. 468 p. (In Russian).
- 7. **Dwight, H.B.** Tables of integrals and other mathematical data. Moscow: "Nauka" Publisher, 1977. 224 p. (In Russian).

AUTOMODULATION OF ONE-DIMENSIONAL WAVES BASED ON NONLINEAR SCHRÖDINGER EQUATION WITH ARBITRARY NONLIANERITY

I. V. Alimenkov

S.P. Korolyov Samara State Aerospace University (National Research University)

Abstract

It is found in quadratures the solution of nonlinear Schrödinger equation with arbitrary nonlinearity characterized by any function of external influence on nonlinear medium under harmonic field.

<u>Key words:</u> common nonlinear Schrödinger equation, arbitrary function of nonlinear reaction, exact solution in quadratures, solitons solutions.

Сведения об авторе

Алименков Иван Васильевич, 1949 года рождения. В 1977 году с отличием окончил Куйбышевский государственный университет по специальности «Физика». Кандидат физико-математических наук, работает в должности доцента кафедры «Прикладная математика» СГАУ. Область научных интересов – нелинейная физика.

E-mail: i-alimenkov@mail.ru.

Ivan Vasilyievich Alimenkov, 1949 year of birth. In 1977 has graduated with honours Kuibyshev State University on a speciality "Physics". Candidate in Physics and Mathematics, works as associated professor of sub-department "Applied Mathematics" SSAU. Research interests – nonlinear Physics.

Поступила в редакцию 29 января 2013 г.