МОДЕЛИРОВАНИЕ МИКРОМЕТАЛИНЗЫ С ВЫСОКОЙ ЧИСЛОВОЙ АПЕРТУРОЙ И РАЗНЫМ ЧИСЛОМ СЕКТОРОВ

А.Г. Налимов^{1, 2}

¹ Институт систем обработки изображений РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, Самара, Россия, ² Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

Аннотация

Численно с помощью разностного решения уравнений Максвелла показано, что бинарная микролинза с единичной числовой апертурой в тонкой плёнке аморфного кремния, состоящая из субволновых дифракционных решёток, работающих как полуволновые пластинки, фокусирует вблизи своей поверхности падающий на неё лазерный пучок с линейной поляризацией и плоским волновым фронтом почти с одинаковым качеством при числе дифракционных решёток, поворачивающих плоскость поляризации, от 3 до 16. При этом размеры субволнового фокусного пятна по полуспаду интенсивности по декартовым осям равны 0,435 на 0,457 длины волны для 16 секторных дифракционных решеток и 0,428 на 0,460 длины волны для 4 секторных дифракционных решёток.

<u>Ключевые слова</u>: металинза, спиральная фазовая зонная пластинка, острая фокусировка, FDTD-метод, бинарные субволновые дифракционные решётки.

<u>Цитирование</u>: Налимов, А.Г. Моделирование микрометалинзы с высокой числовой апертурой и разным числом секторов / А.Г. Налимов // Компьютерная оптика. – 2017. – Т. 41, № 5. – С. 655-660. – DOI: 10.18287/2412-6179-2017-41-5-655-660.

Введение

Компоненты фотоники с метаповерхностью интенсивно исследуются в настоящее время. Их привлекательность в том, что они позволяют одновременно управлять поляризацией и фазой лазерного света, и, кроме того, глубина рельефа таких компонент составляет всего десятки нанометров для видимого и ближнего ИК-диапазона. Обзор по ним можно найти в [1]. С помощью компонент с метаповерхностью можно сформировать оптические вихри [2]; пилообразные решётки, отражающие 80% света в заданный угол в широком диапазоне в ближней ИКобласти спектра [3]; сфокусировать свет в кольцо [4] или в поперечный отрезок [5]. Особенно интересным является применение компонент с метаповерхностью в качестве супертонких микролинз [5–8].

В предыдущих работах авторов [9-11] также исследовались некоторые компоненты с метаповерхностью. Были исследованы компоненты микрооптики (микрополяризаторы и микролинзы), преобразующие линейную поляризацию падающего лазерного света в радиальную или азимутальную и осуществляющие субволновую фокусировку света. Особенность этих компонент микрооптики в том, что их поверхность состоит из локальных субволновых бинарных дифракционных решёток. Каждая из этих решёток поворачивает плоскость поляризации падающего света на определённый угол, аналогично полуволновой пластинке. Всего разных решеток в [9-11] было четыре. Они поворачивали плоскость поляризации падающего света на четыре разных угла. Этого оказалось достаточно, чтобы из линейно-поляризованного света сформировать свет с приближённой радиальной или азимутальной поляризацией.

В данной статье описаны результаты моделирования фокусировки света с помощью микрометалинз с единичной числовой апертурой и разным числом субволновых дифракционных решёток. Показано, что наилучший результат фокусировки линейно-поляризованного света (наиболее круглое фокусное пятно наименьших размеров) получается при числе дифракционных решёток 16. Для металинзы с 16 градациями поворота плоскости поляризации по азимутальному углу размеры фокусного пятна по полуспаду интенсивности по декартовым координатам составляют 0,435 на 0,457 длины волны (эллиптичность фокуса 1,05).

Моделирование субволновой поляризационной решётки

Металинза, рассматриваемая в работе, формируется по алгоритму, предложенному в [11]. Согласно этому алгоритму бинарная линза состоит из зонной пластинки с заданной числовой апертурой и фокусным расстоянием. Но вместо формирования рельефа в прозрачной подложке, дающего задержку фазы между соседними зонами на полдлины волны, в каждой из зон формируется субволновый бинарный рельеф, состоящий из локальных дифракционных решёток. Каждая из этих решёток должна поворачивать плоскость поляризации на заданный угол. Возникают вопросы: будет ли зависимость угла поворота плоскости поляризации ф от угла наклона линий дифракционной решетки а линейная? И будет ли коэффициент пропускания света для разных решёток одинаковым? Для ответа на первый вопрос получена зависимость угла ф поворота вектора поляризации света после прохождения через субволновую дифракционную решётку от угла наклона α вектора поляризации падающего поля к линиям решётки (рис. 1а). Эта зависимость показана на рис. 1б (сплошная кривая). Она была получена при моделировании прохождения света с линейной поляризацией (вектор поляризации падающей плоской волны вертикальный **E**₁ (рис. 1*a*)) через решетку высотой 120 нм в аморфном кремнии с показателем преломления n = 4,35 + i0,486 [11]. Для ответа на второй вопрос была получена зависимость относительной интенсивности прошедшего решётку излучения от угла α (рис. 1 δ , пунктирная кривая). Моделирование проводилось с помощью разностного решения уравнений Максвелла методом FDTD в программном пакете FullWAVE. Параметры решётки: период – 220 нм, ширина канавки – 110 нм, ширина выступа – 110 нм, глубина рельефа – 120 нм. Длина волны $\lambda = 633$ нм.

зависимость угла φ (сплошная кривая) выходного вектора электрического поля E₂ и относительной интенсивности I (пунктирная кривая) от угла наклона линий решётки α

Из рис. 1б видно, что зависимость выходного угла φ от входного α при использовании данного материала близка к линейной. И сильнее всего отличается от линейной зависимости при углах α, равных 40, 50 и 70 градусов. Но идеальная линейность и не требуется, при больших отклонениях графика зависимости выходного угла вектора поляризации от прямой линии это следует учитывать при проектировании металинзы, состоящей из субволновых решеток. График зависимости прошедшей интенсивности I (падающая интенсивность равна 1 в каждой точке) от угла наклона штрихов а (рис. 1б) не является горизонтальной прямой, а имеет вид квазипериодической функции, изменяющейся в диапазоне от 0,7 до 1. Это означает, что металинза не будет только фазовым компонентом, а будет модулировать постоянную интенсивность падающего света и тем самым уменьшать эффективность.

Металинзы с разным числом градаций угла наклона вектора поляризации

В этом параграфе проведено моделирование острой фокусировки лазерного света с линейной поляризацией и плоским волновым фронтом бинарной металинзой в аморфном кремнии с числом градаций наклона вектора поляризации падающей волны от 3 до 121. На рис. 2*a* представлен внешний вид металинзы, состоящей из 16 дифракционных решеток.

Рис. 2. Общий вид металинзы диаметром 8 мкм (364×364 отсчётов) (а) и спиральная зонная пластинка (б), используемая при построении металинзы

На рис. 2а они видны как 16 секторов, исходящих из центра. Решётки в каждом секторе имеют такой наклон линий, чтобы на выходе получилась азимутальная поляризация. Известно, что азимутальнополяризованный свет с фазовой сингулярностью может быть сфокусирован в круглое фокусное пятно [12] субволнового размера, подобно радиально-поляризованному свету [13]. Для реализации фазовой сингулярности была использована спиральная зонная пластинка с топологическим зарядом 1 вместо обычной зонной пластинки. При этом в соседних зонах спиральной зонной пластинки содержались решётки из диаметрально противоположных секторов. Это даёт возможность создать разницу в направлении поляризации света в соседних зонах на 180 градусов, то есть фаза в них различается на π. Таким образом можно избавиться от необходимости посылать на фокусирующий элемент волну с фазовой сингулярностью. Фактически данная металинза будет функционально содержать три разных компонента: зонную пластинку для фокусировки света, спиральную фазовую пластинку для получения сингулярного волнового фронта с топологическим зарядом 1 и секторные полуволновые пластинки в виде секторных бинарных субволновых дифракционных решеток. Такая металинза будет преобразовывать волну с постоянной фазой (плоскую волну или Гауссов пучок) в азимутально-поляризованный пучок с фазовой сингулярностью и фокусировать его на заданном расстоянии. На рис. 2δ показана спиральная зонная пластинка, использованная для построения фокусирующей свет метаповерхности на рис. 2a. Фокусное расстояние металинзы на рис. 2a равно длине волны $f = \lambda = 633$ нм.

Диаметр металинзы – 8 мкм, падающая волна – плоская с линейной поляризацией. При построении дифракционных решёток размер отсчёта маски (размер пиксела файла со структурой металинзы) был равен 22 нм (0,03 λ). Максимум интенсивности вдоль оси *z* был обнаружен на расстоянии *z* = 600 нм от верхнего края рельефа металинзы, поэтому дальнейшие графики приводятся для этого расстояния. На рис. 3 показаны интенсивность |*E*|² в фокусном пятне на расстоянии 600 нм (вставка) и её сечения вдоль осей *x* и *y*.

Рис. 3. Интенсивности |E/² светового поля на расстоянии 600 нм от металинзы (вставка), изображённой на рис. 2a, и сечения интенсивности |E/² вдоль осей X и Y через центр фокусного пятна. Падающая волна – Еу

Как видно из рис. 3, форма фокусного пятна близка к форме круга. Ширина по полуспаду интенсивности вдоль осей x и y составила FWHMx = 0,435 λ , FWHMy = 0,457 λ . Средняя ошибка при расчете размеров фокуса равна размеру одной ячейки расчетной сетки 0,01 λ . Изменение количества секторов (дифракционных решеток), из которых сконструирована металинза, приводит к изменению как эллиптичности фокусного пятна, так и интенсивности света в центре фокуса. В табл. 1 приведены результаты моделирования различных металинз с количеством секторов (число градаций наклона вектора поляризации) от 3 до 121. В последнем столбце табл. 1 показана эллиптичность фокусных пятен: отношение размеров фокусного пятна по декартовым осям.

Из табл. 1 видно, что даже металинза из трех секторов способна фокусировать свет в почти круглое фокусное пятно субволнового размера, однако интенсивность света в фокусе такой металинзы в 2,14 раз меньше, чем для металинзы из 16 секторов. Видно, что максимум интенсивности и наименьшая эллиптичность достигаются у металинз, состоящих из 12 и 16 секторов. Дальнейшее увеличение количества секторов приводит к уменьшению максимальной интенсивности в центре фокусного пятна и увеличению эллиптичности фокусного пятна, вплоть до отношения диаметров эллипса 1:2. Это связано с деградацией субволновых решёток из-за чрезмерно узких секторов.

Табл. 1. Характеристи	<i>ки фокусных пяте</i>	н, полученных
с помощью металинз с р	различным колическ	твом секторов

Число	FWHMx,	FWHMy,	I max,	Эллип-
секторов	λ	λ	отн. ед.	тичность
3	0,443	0,464	0,997	1,05
4	0,428	0,460	1,84	1,07
6	0,424	0,461	1,67	1,09
8	0,436	0,46	1,8	1,06
12	0,427	0,465	2,13	1,09
16	0,435	0,457	1,94	1,05
24	0,43	0,466	1,95	1,08
32	0,4	0,504	1,68	1,26
54	0,375	0,534	1,68	1,42
81	0,411	0,575	0,919	1,40
121	0,387	0,764	2,13	1,97

Заметим, что площадь фокусного пятна по полуспаду интенсивности, созданного металинзой с числом секторов 16 (рис. 2*a*), равна 0,156 λ^2 . При фокусировке апланатической идеальной линзой с единичной числовой апертурой площадь фокусного пятна для азимутально-поляризованного света с фазовой сингулярностью равна (0,147 λ^2) [12], а для радиальнополяризованного пучка площадь фокуса равна (0,17 λ^2). То есть площадь фокуса, сформированного металинзой (рис. 2*a*), на 10% меньше, чем площадь минимального фокусного пятна, которое можно получить с помощью апланатической линзы при фокусировке света с радиальной поляризацией.

Интересно, что в отличие от фокусировки радиально-поляризованного света, в данном случае основной вклад в фокусное пятно дают поперечные компоненты электрического поля Ех и Еу, в то время как продольная компонента пренебрежимо мала. На рис. 4 показаны интенсивности отдельных компонент электрического поля в фокусном пятне, изображённом на рис. 3.

Рис. 4. Вклад поперечных и продольной компонент в формирование фокусного пятна с помощью металинзы, фокусирующей азимутально поляризованный свет с фазовой сингулярностью (рис. 2a)

Преимущество фокусировки света только поперечными составляющими электрического поля в том, что почти весь свет, попавший в фокус, направляется к наблюдателю (или фотоприемнику), расположенному на оптической оси.

Моделирование измерения поля с помощью кантилевера

Другое преимущество острой фокусировки света с помощью азимутальной поляризации с сингулярной фазой в том, что зарегистрировать интенсивность света в фокусе с помощью зонда с наноотверстием, расположенного на оптической оси, можно с меньшей ошибкой и большим отношением сигнал/шум. При измерении интенсивности светового поля вблизи поверхности с помощью сканирующего ближнепольного оптического микроскопа (СБОМ) используются пирамидальные полые алюминиевые кантилеверы с отверстием квадратного сечения на вершине пирамиды со стороной 100 нм. Такие кантилеверы чувствительны к поперечным компонентам электрического поля. На рис. 5а показан кантилевер (и его характеристики), который используется в СБОМ (кантилеверы SNOM_NC производства NT-MDT). На рис. 56 показан результат моделирования измерения фокусного пятна (рис. 4) кантилевером, показанным на рис. 5а.

Рис. 5. Параметры кантилевера СБОМ с квадратным отверстием со стороной 100 нм из алюминия (a) и зависимость прошедшего через кантилевер излучения от его координаты вдоль оси х при сканировании фокусного пятна на рис. 3, 4

Показатель преломления алюминиевых стенок кантилевера был принят n = 1,27 + 7,3i. Остриё кантилевера располагалось в фокусной плоскости на расстоянии 600 нм от металинзы (рис. 2*a*). Кантилевер помещался в точку с координатами (x, y = 0) и моделировалось прохождение света через металинзу и далее через кантилевер. Свет, прошедший через отверстие в кантилевере, регистрировался монитором внутри кантилевера. Далее кантилевер смещался в другую точку вдоль оси x с шагом 50 нм, и вновь проводились измерения. Ширина сечения по полуспаду интенсивности на рис. 5*б* равна FWHM = 0,44 λ , то есть она увеличилась всего на 3 нм по сравнению с

шириной фокусного пятна (FWHMx = $0,435\lambda$) на рис. 3, 4. Можно сделать вывод, что кантилевер (рис. 5*a*) с отверстием 100 нм и шагом сканирования 50 нм способен измерить диаметр субволнового фокусного пятна, сформированного вблизи поверхности металинзы светом с азимутальной поляризацией, почти без ошибки (с ошибкой 2 %).

Заключение

В работе получены следующие численные результаты. При фокусировке лазерного света металинзой (диаметром 8 мкм) с единичной числовой апертурой (фокусное расстояние 633 нм) в тонкой пленке аморфного кремния, преобразующей линейную поляризацию падающей плоской волны в азимутальную с сингулярностью фазы, формируется субволновое почти круглое фокусное пятно с размерами по полуспаду интенсивности вдоль декартовых осей 0,435 на $0,457\lambda$, $\lambda = 633$ нм. Максимальная интенсивность в фокусе в 2 раза превышает интенсивность падающего света. При этом число градаций угла поворота вектора поляризации (или число локальных субволновых дифракционных решёток, использующихся в металинзе) может меняться от 3 до 16, что не будет приводить к существенному изменению размеров и формы фокусного пятна: эллиптичность будет меньше 1,1. Наименьший и наиболее круглый фокус формируется при числе градаций угла поворота вектора поляризации (или при числе решёток) 16. Сформированной металинзой фокус состоит из вклада только поперечных составляющих интенсивности электрического вектора, и поэтому почти без ошибки может быть измерен с помощью пирамидального полого алюминиевого зонда с отверстием 100 нм и шагом сканирования 50 нм.

Благодарности

Работа выполнена при поддержке гранта Российского научного фонда № 17-19-01186.

Литература

- Yu, N. Flat optics with designer metasurfaces / N. Yu, F. Capasso // Nature Materials. – 2014. – Vol. 13, Issue 2. – P. 139-150. – DOI: 10.1038/nmat3839.
- Yang, Y. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation / Y. Yang, W. Wang, P. Moitra, I.I. Kravchenko, D.P. Briggs, J. Valentine // Nano Letters. – 2014. – Vol. 14, Issue 3. – P. 1394-1399. – DOI: 10.1021/nl4044482.
- Sun, S. High-efficiency broadband anomalous reflection by gradient meta-surfaces / S. Sun, K. Yang, C. Wang, T. Juan, W.T. Chen, C.Y. Liao, Q. He, Sh. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, D.P. Tsai // Nano Letters. – 2012. – Vol. 12, Issue 12. – P. 6223-6229. – DOI: 10.1021/nl3032668.
- Lan, L. Three dimensional subwavelength focus by a nearfield plate lens / L. Lan, W. Jiang, Y. Ma // Applied Physics Letters. – 2013. – Vol. 102, Issue 23. – 231119. – DOI: 10.1063/1.4810004.
- Verslegers, L. Planar lenses based on nanoscale slit arrays in a metallic film / L. Verslegers, P.B. Catryss, Z. Yu, J.S. White, E.S. Barnard, M.L. Brongersma, Sh. Fan // Nano

Letters. – 2009. – Vol. 9, Issue 1. – P. 235-238. – DOI: 10.1021/nl802830y.

- Aieta, F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces / F. Aieta, P. Genevet, M.A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso // Nano Letters. – 2012. – Vol. 12, Issue 9. – P. 4932-4936. – DOI: 10.1021/nl302516v.
- Arbabi, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays / A. Arbabi, Y. Horie, A.J. Ball, M. Bagheri, A. Faraon // Nature Communications. – 2015. – Vol. 6. – 7069. – DOI: 10.1038/ncomms8069.
- Arbabi, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission / A. Arbabi, Y. Horie, M. Bagheri, A. Faraon // Nature Nanotechnology. – 2015. – Vol. 10, Issue 11. – P. 937-943. – DOI: 10.1038/nnano.2015.186.
- Kotlyar, V.V. Subwavelength micropolarizer in a gold film for visible light / V.V. Kotlyar, S.S. Stafeev, M.V. Kotlyar, A.G. Nalimov, L. O'Faolain // Applied Optics. – 2016. –

Vol. 55, Issue 19. – P. 5025-5032. – DOI: 10.1364/AO.55.005025.

- Stafeev, S.S. Microlens-aided focusing of linearly and azimuthally polarized laser light / S.S. Stafeev, A.G. Nalimov, M.V. Kotlyar, D. Gibson, S. Song, L. O'Faolain, V.V. Kotlyar // Optics Express. – 2016. – Vol. 24, Issue 26. – P. 29800-29813. – DOI: 10.1364/OE.24.029800.
- Kotlyar, V.V. Thin high numerical aperture metalens / V.V. Kotlyar, A.G. Nalimov, S.S. Stafeev, Ch. Hu, L. O'Faolain, M.V. Kotlyar, D. Gibson, S. Song // Optics Express. – 2017. – Vol. 25, Issue 7. – P. 8158-8167. – DOI: 10.1364/OE.25.008158.
- Hao, X. Phase encoding for sharper focus of the azimuthally polarized beam / X. Hao, C. Kuang, T. Wang, X. Liu // Optics Letters. – 2010. – Vol. 35, Issue 23. – P. 3928-3930. – DOI: 10.1364/OL.35.003928.
- Dorn, R. Sharper focus for a radially polarized light beams / R. Dorn, S. Quabis, G. Leuchs // Physical Review Letters. – 2003. – Vol. 91. – 233901. – DOI: 10.1103/PhysRev-Lett.91.233901.

Сведения об авторе

Сведения об авторе Налимов Антон Геннадьевич см. стр 653 этого номера.

ГРНТИ: 29.31.15

Поступила в редакцию 19 мая 2017 г. Окончательный вариант – 5 июня 2017 г.

MODELING A HIGH NUMERICAL APERTURE MICROMETALENS SIMULATION WITH AND A VARYING NUMBER OF SECTORS

A.G. Nalimov ^{1, 2}

¹Image Processing Systems Institute of RAS – Branch of the FSRC "Crystallography and Photonics" RAS, Samara, Russia, ²Samara National Research University, Samara, Russia

Abstract

Using the numerical solution of differential Maxwell's equations, we show that a binary microlens with unit numerical aperture (NA = 1) manufactured in a thin-film amorphous silicon focuses the laser light into a near-surface subwavelength optical focal spot. The microlens contains sectored subwavelength diffraction gratings operating as half-wave plates. The incident light is a linearly polarized plane wave. The micrometalens is numerically shown to operate with near-same efficiency with the number of sectored grating varying from 3 to 16. It is shown that a 16-sector micrometalens generates a focal spot of size at the full-width at half-maximum intensity of FWHMx = 0.435 λ and FWHMy = 0.457 λ along the Cartesian axes, where λ is the incident wavelength. A 4-sector microlens is numerically shown to focus light into a focal spot of size FWHMx = 0.428 λ and FWHMy = 0.46 λ .

<u>Keywords</u>: metalens, phase zone plate, sharp focus, FDTD method, scanning near-field optical microscope.

<u>Citation</u>: Nalimov AG. Modeling a high numerical aperture micrometalens with a varying number of sectors. Computer Optics 2017; 41(5): 655-660. DOI: 10.18287/2412-6179-2017-41-5-655-660.

<u>Acknowledgements</u>: The work was funded by a grant of the Russian Science Foundation (# 17-19-01186).

References

- [1] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014; 13(2): 139-150. DOI: 10.1038/nmat3839.
- [2] Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014; 14(3): 1394-1399. DOI: 10.1021/nl4044482.
- [3] Sun S, Yang K, Wang C, Juan T, Chen WT, Liao CY, He Q, Xiao Sh, Kung W-T, Guo G-Y, Zhou L, Tsai DP. High-

efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 2012; 12(12): 6223-6229. DOI: 10.1021/nl3032668.

- [4] Lan L, Jiang W, Ma Y. Three dimensional subwavelength focus by a near-field plate lens. Appl Phys Lett 2013; 102(23): 231119. DOI: 10.1063/1.4810004.
- [5] Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan Sh. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 2009; 9(1): 235-238. DOI: 10.1021/nl802830y.

- [6] Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012; 12(9): 4932-4936. DOI: 10.1021/nl302516v.
- [7] Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 2015; 6: 7069. DOI: 10.1038/ncomms8069.
- [8] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 2015; 10(11): 937-943. DOI: 10.1038/nnano.2015.186.
- [9] Kotlyar VV, Stafeev SS, Kotlyar MV, Nalimov AG, O'Faolain L. Subwavelength micropolarizer in a gold film

for visible light. Appl Opt 2016; 55(19): 5025-5032. DOI: 10.1364/AO.55.005025.

- [10] Stafeev SS, Nalimov AG, Kotlyar MV, Gibson D, Song S, O'Faolain L, Kotlyar VV. Microlens-aided focusing of linearly and azimuthally polarized laser light. Opt Express 2016; 24(26): 29800-29813. DOI: 10.1364/OE.24.029800.
- [11] Kotlyar VV, Nalimov AG, Stafeev SS, Hu C, O'Faolain L, Kotlyar MV, Gibson D, Song S. Thin high numerical aperture metalens. Opt Express 2017; 25(7): 8158-8167. DOI: 10.1364/OE.25.008158.
- [12] Hao X, Kuang C, Wang T, Liu X. Phase encoding for sharper focus of the azimuthally polarized beam. Opt Lett 2010; 35(23): 3928-3930. DOI: 10.1364/OL.35.003928.
- [13] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beams. Phys Rev Lett 2003; 91: 233901. DOI: 10.1103/PhysRevLett.91.233901.

Author's information

The information about author Anton Gennadyevich Nalimov you can find on page 654 of this issue.

Received May 19, 2017. The final version – June 5, 2017.