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Abstract 
In this paper, we estimate the accuracy of 3D object reconstruction using multiple Kinect sen-

sors. First, we discuss the calibration of multiple Kinect sensors, and provide an analysis of the ac-
curacy and resolution of the depth data. Next, the precision of coordinate mapping between sen-
sors data for registration of depth and color images is evaluated. We test a proposed system for 3D 
object reconstruction with four Kinect V2 sensors and present reconstruction accuracy results. Ex-
periments and computer simulation are carried out using Matlab and Kinect V2. 
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Introduction 
The 3D reconstruction of objects is a popular task, with 

applications in the field of medicine, architecture, games, 
and film industry. The 3D reconstruction has many appli-
cations in object recognition, object retrieval, scene under-
standing, object tracking, autonomous navigation, human-
computer interaction, telepresence, telesurgery, reverse en-
gineering, virtual maintenance and visualization [1 – 9]. 

Accurate 3D reconstruction of objects is an important 
ingredient for many robotic, assisted living, surveillance, 
and industrial applications [10]. Consumer depth cam-
eras, such as Microsoft’s Kinect, provide depth informa-
tion based on an active structured light sensor combined 
with color images. The additional depth information 
helps to estimate the position of 3D object in 3D envi-
ronment; however, the use of a single (color and depth) 
camera is still limited especially in highly cluttered 
scenes, with object occlusion and objects, which are dif-
ficult to distinguish from a single view. Therefore, it is 
necessary to capture an object of interest from several 
viewpoints, then the data from all viewpoints are subse-
quently combined to obtain the surface of the entire ob-
ject. The problem of 3D reconstruction can be solved in 
several ways. The object at several instants can be cap-
tured using a single sensor such as in [11, 12] where the 
object rotates, and the camera is still or as in [13, 14] 
where the sensor moves around a still object. Another ap-
proach uses multiple sensors that capture the object si-
multaneously as in [15 – 17]. However, fusing information 
from multiple depth cameras for object detection has not 
been investigated in detail. In this paper, we investigate 
this system, the calibration procedure, the problem of in-
terference and the accurate 3D reconstruction of objects. 

The paper is organized as follows. Section 2 discusses 
related approaches, scenarios, and datasets. Section 3 de-
scribes the proposed system with fusion of information 
from multiple Kinect sensors for object 3D reconstruc-

tion. In Section 4 experimental results are discussed. Fi-
nally, Section 5 presents our conclusions. 

1. Related work 
This section contains information about feature repre-

sentations for depth, multi-camera approaches, and avail-
able datasets obtained with (consumer) depth cameras. 

In order to fill small holes and to eliminate noise, the 
median and binomial filters were used [18 – 23]. More-
over, the use of the color information in the point corre-
spondence process avoids false positives matches and, 
therefore, leads to a more reliable registration. Note that 
by adjusting iterative closest point (ICP) algorithm and 
reconstruction parameters it is possible to improve the 
registration and appearance of details that were invisible 
with just one scan due to the sensor-limited precision. Fi-
nally, it was shown [24] that 3D smooth surface of ob-
jects can be reconstructed using low precision sensors 
such as Kinect. 

In [15] authors generate point clouds from the depth 
information of multiple registered cameras and use the 
VFH descriptor to describe them. For color images, they 
employ the DPM and combine both approaches with a 
simple voting approach across multiple cameras. 

A new method for the occluded object visualization 
using two Kinect sensors at different locations was pro-
posed in [25]. 

The interference problem of multiple Kinect cameras 
dramatically degrades the depth quality. In paper [26] an 
algorithm for interference cancelation in systems with 
multiple Kinect camera was proposed. This algorithm 
takes advantage of statistic property of depth map, propa-
gates reliable gradient from interference-free region to in-
terfered region, and derives depth values with complete 
gradient map under the least errors criterion. 

A novel approach to combine data from multiple low-
cost sensors to detect people in a mobile robot was pro-
posed in [27]. This work is based on the fusion of infor-
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mation from Kinect and a thermal sensor (thermopile) 
mounted on top of a mobile platform. 

In [28] authors proposed a human action recognition 
system using multiple Kinect sensors based on multi-
view skeleton integration. In [13] the Kinect Fusion was 
designed for the 3D reconstruction of a scene in real-time 
using the Kinect sensor. The system was applied for Vis-
ual Navigation of a Robotic Vehicle when no external 
reference like GPS is available. 

A mirror movement’s rehabilitation therapy system for 
hemiplegic patients was proposed in [29]. This system is 
based on two Kinects to eliminate problems like limb 
blocking, data loss in one Kinect by Brusa seven-parameter 
model and RLS method for coordinate transformation. 
Two networked Kinect sensors are used for real-time rigid 
body head motion tracking for brain PET/CT in [30]. Mul-
tiple Kinect Fusion allows head motion tracking in the case 
when partial and complete occlusions of the face occur. To 
increase the accuracy of human joint position estimation 
for rehabilitation and physiotherapy information-fusion 
from multiple Kinects was used [31]. It was shown that the 
most significant improvement is achieved with two Kinects 
and the subsequent increase of the number of receivers is 
not significant. 

A system for live 3D reconstruction using multiple 
Kinect sensors is presented in [16]. This paper describes a 
general design of the system architecture, the method of 
estimating the camera poses in 3D space, the problem of 
interference between multiple Kinect V2 devices. The 
following issues of 3D reconstruction using multiple Ki-
nect are improved: automated markerless calibration, im-
proved noise removal, tessellation of the output point 
cloud and texturing. 

One of the most important problems is a calibration 
method for multiple Kinects. In paper [32], an accurate 
and efficient calibration method for multiple Kinects was 
proposed by overlapping joint regions among Kinects and 
extra RGB cameras, containing a sufficient number of 
corresponding points between color images to estimate 
the camera parameters. The parameters are obtained by 
minimizing both the errors of corresponding points be-
tween color images and the ones of range data of planar 
regions from the environment. 

A method to calibrate multiple Kinect sensors was 
developed in [33]. The method requires at least three ac-
quisitions of a 3D object from each camera or a single 
acquisition of a 2D object, and a point cloud from each 
Kinect obtained with the built-in coordinate mapping ca-
pabilities of Kinect. The proposed method consists of the 
following steps: image acquisition, pre-calibration, point 
cloud matching, intrinsic parameters initialization, and fi-
nal calibration. 

Different methods to calibrate a 3-D scanning system 
consisting of multiple Kinect sensors were investigated in 
[34]. A sphere, a checker board and a cube as the calibra-
tion object were proposed. A cubic object for the calibra-
tion task is the most suitable for this application. 

A novel method for simultaneous calibration of rela-
tive poses of a Kinect and three external cameras by op-

timizing a cost function and adding corresponding 
weights to the external cameras in different locations is 
proposed in [35]. A joint calibration of multiple devices 
is efficiently constructed. 

A real-time 3D reconstruction method to extend the 
limited field of view of the depth map of Kinect sensors by 
using registration data of color images to construct depth 
and color panorama is proposed in [36]. An efficient ani-
sotropic diffusion method is proposed to recover invalid 
depth data in the depth map from the Kinect sensors. 

A calibration procedure with Kinects coordinate map-
ping to extract registered color, depth, and camera space 
data during the acquisition step was proposed in [17]. Us-
ing three acquisitions from each camera, the calibration 
procedure is capable to obtain the intrinsic and extrinsic 
parameters for each camera. A method for point cloud fu-
sion after calibrating the cameras is suggested in [17]. 

RGB-D datasets for different applications including ob-
ject reconstruction and 3D-simultaneous localization and 
mapping were proposed in [10]. We choose the TUM 
Benchmark dataset for evaluating visual odometry and vis-
ual SLAM (Simultaneous Localization and Mapping) [37]. 

2. The proposed system 
This section provides the proposed system with fusion 

of information from multiple Kinect sensors for object 
3D reconstruction. 

We consider the following steps of the proposed 
system: data acquisition, calibration, point cloud fusion. 

Step 1: data acquisition 
The acquisition step obtains two types of data from 

each Kinect: a point cloud PCi from each Kinect sensor; 
the 2D projections of the point cloud on the depth and 
color cameras. We represent depth information as point 
clouds, i.e. as a set of points in the 3D space with 3D 
coordinates. This allows easy aggregation of the depth 
information available from multiple registered cameras 
views. We retain RGB color and depth images as well as 
3D point clouds for each camera and registered multi-
view point clouds computed from the depth images. Note 
that the depth data provided by Kinect is noisy and 
incomplete. Noisy data possess to variations between 2 to 
4 different discrete depth levels. So, we smooth the depth 
data by averaging over 9 depth frames. In order to 
recover incomplete regions, median filtering is utilized. 
The interference problem of multiple Kinect cameras was 
solved even for large angles between Kinects. 

Camera space refers to the 3D coordinate system used 
by Kinect, where the coordinate system is defined as 
follows [17]: the origin is located at the center of the 
infrared sensor on the Kinect; the positive X direction 
goes to the sensor’s left; the positive Y direction goes up; 
the positive Z goes out in the direction the sensor is 
facing; and the units are in meters. 

The data acquisition procedure follows the next 
steps [17]: 
1. On each sensor, we use the color camera to capture 

images synchronously in order to detect the colored 
markers. For this, we use small color blobs that satisfy 
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certain constraints: on the 1D calibration pattern, the 
color points should lie on a line with the fixed length; 
and for the 2D pattern, the color points must have 
fixed distances given by the 2D pattern. The red, 
green, blue, and yellow markers are defined as a, b, c, 
and d respectively. All the cameras must find the 
three or four markers to count as a valid frame.  

2. Map the coordinates of a, b, c, and d by the coordinate 
mapping from color space to camera space obtaining 
Ai, Bi, Ci, and Di where Ai, Bi, Ci, Di

 ∈ R 
3 and 

i ∈ {1, 2, 3, 4} is the Kinect identification.  
3. Map the complete depth frame (424×512 depth values) 

to camera space points producing a point cloud PCi for 
each Kinect sensor where PCi

 ∈ R 
217088×3 using the 

depth camera and the coordinate mapping.  
4. Transfer the 3D coordinates of the points 

(Ai, Bi, Ci, Di
 ) and the point clouds PCi.  

Step 2: calibration 
Our pose estimation procedure consists of two steps: 

pre-calibration and calibration. 
The pre-calibration procedure provides an initial 

rough estimate of the camera poses. We calibrate the 
extrinsic matrix between different Kinect cameras using 
ICP algorithm and markers as the calibration object 
[34, 33, 17]. We define the depth camera of the first 
Kinect as the reference. 

The second procedure performs a full camera 
calibration, i.e., it computes intrinsic and extrinsic 
parameters, by finding numerous 3D point matches 
between pairs of adjacent cameras. We select a less 
computationally expensive solution; that is, the R-Nearest 
Neighbor [17], which is described below. 

First, apply the transformations obtained during the 
pre-calibration step to each of the point clouds PCi, 
i ∈ {2, 3, 4} to align them with the reference point cloud 
from the first sensor PC1. Once the point clouds are 
aligned, search for 3D points matches between the 
reference point cloud and the rest using the nearest 
neighbor approach inside a radius R = 2 millimeters. A 
point p is the R-near neighbor of a point q if the distance 
between p and q is at most. The algorithm either returns 
the nearest R-near neighbor or concludes that no such point 
exists. Note that the point clouds must have overlapped 
points to find matches between pairs of cameras. 

The pose is represented by a 4×4 rigid transformation 
containing the rotation R and translation t that align each 
of the cameras with the reference. To obtain these 
transformations we used the camera space points 
Ai, Bi, Ci, Di from each Kinect sensor obtained in the data 
acquisition step. Setting the first Kinect (i = 1) as the 
reference, the problem of obtaining the pose boils down 
to obtaining the best rotations Ri and translations ti that 
align the points from the Kinect sensors Mi

 = [Ai
 Bi

 Ci
 Di ], 

i ∈ {2, 3, 4} to the points in the reference Kinect (M1). 
The calibration of the extrinsic matrix procedure 

consists of the following steps:   
1. Solve for Ri and ti:  

1 ,i i iM R M t= +  

where Ri and ti are rotations and translations applied to 
each set of points Mi, i ∈ {2, 3, 4} to align them with the 
reference M1. 
2. Find the centroids of the 3D points Mi:  

( ) / 4.i i i i icentroid A B C D= + + +  
3. Move the points to the origin and find the optimal 

rotation Ri:  
3

11
1

( )( ) ,j j T
i ii

j

H M centroid M centroid
=

= − −∑  

[ ] ( ), , ,    ,T
i i i i i i iU S V SVD H R VU= =  

where Hi is the covariance matrix of the i-th Kinect and 
SVD denotes the singular value decomposition. 
4. Find the translation ti as  

1.i i it R centroid centroid= − +  
5. Apply a refining step using Iterative Closest Point 

(ICP) on each aligned point cloud with the reference, 
to minimize the difference between them. The aligned 
point clouds will be denoted as PCi, i ∈ {2, 3, 4}.  
The matching points between the reference Kinect 

and the rest (obtained in the point cloud matching step) 
are the 3D points in the world reference and will be 
denoted by PWi for i ∈ {2, 3, 4}, the 2D projections of 
these points on the image plane are denoted by ui

 = (u, v) 
and are known from the acquisition step. 

In homogeneous coordinates, the mapping between 
points PW

 = (x, y, z) and their 2D projections u = (u, v) in 
the image plane is given by  

( ) 0
0 1 W
R t

u K P
⎛ ⎞

λ = ⎜ ⎟
⎝ ⎠

, 

where K is the intrinsic parameters matrix or camera 
parameters, and [R, t]W→C the extrinsic parameters, R is a 
3×3 rotation matrix that defines the camera orientation 
and t is a translation vector that describe the position of 
the camera in the world. 

Our goal is to compute the intrinsic parameters K 
which contains the focal length (α, β), a skew factor (γ), 
and the principal point (u0, v0) for fixed extrinsic 
parameters [R, t] obtained with the pre-calibration step. 
We estimate the intrinsic parameters as proposed in [33]  

0 0
1

[ , , , , ]  ( ) ( ) ,
J

T T
h i i i i

i

u v argmin A h u A h u
=

⎡ ⎤
α β μ = − −⎢ ⎥

⎣ ⎦
∑  

where J is a number of 3D point matches (xi, yi, zi), 
i ∈ 1, ..., J and the matrix T

iA  is 
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31 32 33
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31 32 33

0

0
,

1 0

0

0 1

i i i x
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where rjk and tx, ty, tz are the rotation and translation 
elements of the known pose transformation between the 
reference camera and the camera which we want to 
estimate the intrinsic parameters. 

Step 3: point cloud fusion 
Fusing all the point clouds with color into a single one 

can be done using the calibration data from each camera 
[17]. After acquiring a depth and color frame from each 
Kinect sensor, we undistort the depth image and obtain 
the [x, y, z] coordinates of each pixel in the 3D world 
space. The [x, y, z] points are mapped onto the color frame 
using the intrinsic and extrinsic parameters of the color 
camera to obtain the corresponding color of each 3D point. 
Finally, to merge the colored 3D data we use the extrinsic 
parameters of each camera, i.e., the pose between each 
camera and the reference are utilized to transform all the 
point clouds into a single reference frame. 

4. Experimental results 
In this section, we present the results to evaluate the 

performance of our proposed method of calibration and 
fusion of multiple Kinect sensors for object 3D recon-
struction. 

In our experiments, four Kinect V2 sensors connected 
to four computers which featured an Intel core i7 proces-
sor with four cores and 16 GB of memory were used. To 
evaluate the performance of our calibration method, we 
carried out point cloud fusion and 3D reconstruction of a 
chair from database [37]. The object was placed in the 
field of view of the four cameras, wherein depth map and 
RGB frames were acquired by each Kinect V2 sensor. 
Fig. 1 shows RGB images and depth maps of a chair 
taken by four Kinect sensors using real data. 

The Kinect accuracy is not very good and degrades 
with distance [38]. However, our calibration method with 
computed distortion parameters yields a better accuracy 
than the Kinect’s built-in mapping. To evaluate our cali-
bration results qualitatively, we mapped the [x, y, z] points 
onto the color frame using the intrinsic and extrinsic pa-
rameters of the color camera. In this way, the correspond-
ing color of each 3D point is obtained. Finally, by merg-
ing the colored 3D data from the four Kinect sensors we 
got a 3D fused point cloud which then used for recon-
struction of a meshed object with MeshLab. Fig. 2 shows 
the 3D reconstruction of a chair. The 3D model is fine 
and accurate. 

The experiment has shown that the proposed method 
of calibration and fusion of multiple Kinect sensors is 
able to provide accurate 3D object reconstruction. All 
frames from multiple Kinect sensors are fused correctly. 

Also, we have experimental results for evaluation of 
the performance of the proposed system with fusion of 
information from RGB-D sensor for object 3D 
reconstruction. The metric of evaluation is the root mean 
square error (RMSE) of measurements.  

2( ( ) ),RMSE E ED RD= −  

where ED is the estimated measurement by a device and 
RD is the real known measurement of the object. 

  

  

  

  
Fig. 1. The RGB images and depth maps of a chair are scanned 

by four Kinect sensors 

 
Fig. 2. 3D Reconstruction of objects using our proposed method 

By taking five measurements, the average values were 
calculated. Corresponding RMSE values calculated for 
Kinect V2 are shown in Table 2. 

Table 1. Results of measurements 

 Real World Kinect V2 RMSE 
Length 734 732 2 
Width 867 872 5 
Height 895 889 6 
Diagonal 639 647 8 
Geodetic 678 682 4 
Area 67960 68010 50 
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The results show that Kinect V2 yields a necessary 
accurate 3D model of the object. The obtained accuracy 
allows us to make all measurements on the 3D model as 
on a real object. 

5. Conclusion 
 In this paper, we proposed the system of fusion of 

multiple Kinect sensors for object 3D reconstruction. The 
procedure contains the following steps: data acquisition, 
calibration of multiple Kinect sensors, point cloud fusion 
from multiple Kinect sensors. The implementation is 
done in MATLAB using the Kinect V2. We evaluated the 
performance of our proposed system for object 3D recon-
struction using real data. The experiment has shown that 
the proposed method of calibration and fusion of multiple 
Kinect sensors for object 3D reconstruction is accurate. 
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