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Abstract 

Image processing is an effective method for characterizing various two-phase gas/liquid flow 
systems. However, bubbly flows at a high void fraction impose significant challenges such 
as diverse bubble shapes and sizes, large overlapping bubble clusters occurrence, as well as out-of-
focus bubbles. This study describes an efficient multi-level image processing algorithm for highly 
overlapping bubbles recognition. The proposed approach performs mainly in three steps: overlap-
ping bubbles classification, contour segmentation and arcs grouping for bubble reconstruction. In 
the first step, we classify bubbles in the image into a solitary bubble and overlapping bubbles. The 
purpose of the second step is overlapping bubbles segmentation. This step is performed in two 
subsequent steps: at first, we classify bubble clusters into touching and communicating bubbles. 
Then, the boundaries of communicating bubbles are split into segments based on concave point ex-
traction. The last step in our algorithm addresses segments grouping to merge all contour segments 
that belong to the same bubble and circle/ellipse fitting to reconstruct the missing part of each 
bubble. An application of the proposed technique to computer generated and high-speed real air 
bubble images is used to assess our algorithm. The developed method provides an accurate and 
computationally effective way for overlapping bubbles segmentation. The accuracy rate of well 
segmented bubbles we achieved is greater than 90 % in all cases. Moreover, a computation time 
equal to 12 seconds for a typical image (1 Mpx, 150 overlapping bubbles) is reached.  
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Introduction 

Precise measurement of bubbly flows is crucial to un-
derstand the bubble behavior, mass, and heat transfer pat-
tern in various engineering processes. It also plays a vital 
role in advancing the development of the theoretical 
model in the two-phase flows study. Currently, numerous 
techniques can be used to measure bubbly flow that can 
be classified into two main groups, namely: intrusive and 
non-intrusive techniques. Typical intrusive techniques in-
clude conductivity probe [1, 2] and phase sensitive con-
stant temperature anemometry [3]. Non-intrusive tech-
niques include laser doppler anemometry [4], X-ray and 
ɣ-ray computed tomography [5, 6] and image processing 
techniques [7, 8]. Among these methods, high-speed im-
aging is an efficient, convenient and broadly used tool in 
the bubbly flow visualization and measurement. A diver-
sity of information including bubble size, velocity and 
number density can be provided by the recorded images 
of bubbles [9 – 17].  

However, the task of bubbles recognition in recorded 
image data is not easy. Diverse technical challenges will 
occur while using the image analysis methods. The flow 
around a rising bubble is complex. Due to the interaction 
between the dispersed and liquid phases, the behavior and 

shape of nearby bubbles may be affected. The surface of 
a bubble can be deformed and takes an irregular-shape if 
the bubble becomes unstable, or it is disturbed by the sur-
rounding flow, or going through a process of coales-
cence / breakup. Also, bubbles overlap when the void 
fraction is more than 1 – 2 %. Two major challenging is-
sues will be encountered when handling with images of a 
large cluster of overlapping bubbles: (1) how to accurate-
ly identify bubbles in the image and segment the detected 
boundaries into several curves; (2) how to correctly clas-
sify the separated curves that belong to the same bubble 
and reconstruct its missing parts.  

Recently, many image processing techniques have 
been carried out to automatically analyze complex bubbly 
flow images. One way to deal with bubble clusters is to 
ignore them by constraint conditions such as the concavi-
ty index [18], or the sphericity / roundness [19]. However, 
in a recent study presented in [20] it was shown that even 
if the bubble clusters are assumed as a non-selective pro-
cess, large bubbles are more likely to be present as clus-
ters. Therefore, ignoring these clusters would bias the 
measurement and can introduce large uncertainty special-
ly at higher void fractions. In other techniques, overlap-
ping bubbles were approximated through an object 
recognition method which fits an ellipsoidal shape to the 
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object areas. Honkanen et al. in [21] proposed an original 
method to detect overlapping ellipsoidal bubbles in the 
dense bubbly flow. In their study, the connecting points 
of bubble cluster are extracted using the curvature-profile 
method. Then each cluster of bubble arcs is fitted by an 
ellipse to reconstruct the missing parts. However, the 
technique used for segments grouping often suffers from 
inaccuracy even in the case of the small bubbles cluster. 
Moreover, it is computationally expensive. 

Other authors have focused upon segmenting bubbles 
exploiting watershed algorithm [22], break point ap-
proach [23] and Hough transform method [24]. The 
Hough transform is suitable for detecting circular bubbles 
as shown in [25, 26]. A good accuracy was shown for 
small spherical shape bubbles or solid spheres. Honkanen 
et al. in [27] used the break point technique to separate 
boundaries of overlapping bubbles. The un-occluded edg-
es of individual bubbles were obtained by this method. 
Lau et al. in [28] proposed an image processing technique 
that classifies the detected objects into a solitary bubble 
and overlapping bubbles. The watershed algorithm is ap-
plied in a second step to segment the overlapped bubbles. 
Nevertheless, the watershed algorithm suffers from over-
segmentation and under-segmentation, especially when 
dealing with complex bubble shape. These errors are 
quantified in Lau et al. [28] study, but solutions to over-
come those challenges are not suggested. The watershed 
combined with a set of morphological operations are used 
in the study of [29] to separate large bubble clusters con-
sisting of various sizes. This method minimizes the risk 
of over-segmentation often encountered with the water-
shed algorithm. Also, the drawbacks of the watershed 
method are solved in a recent study developed by Ville-
gas et al. [30]. This algorithm is devoted to the identifica-
tion of ellipsoidal overlapping bubbles in the dense bub-
bly flow. To separate the overlapped bubbles, a combina-
tion of previous algorithms presented in [21, 28] with the 
watershed technique is used.  

A new approach to recognize overlapping elliptical 
shape bubbles is presented in [31]. For contour segmenta-
tion, the dominant points are detected exploiting the po-
lygonal approximation algorithm. Then, the candidate 
segments are grouped based on an average distance devi-
ation (ADD) criterion and two constraints. However, 
these constraints are empirically determined and must be 
adjusted for each image of overlapping bubbles.  

Fu et al. in [32] proposed a robust technique that 
combines optical, geometrical and topological infor-
mation to segment and reconstruct the overlapping bub-
bles in higher void fraction conditions. The clustered 
bubbles boundaries are divided into separated arcs ex-
ploiting boundary curvature and image intensities. Then, 
a topology analysis that combines watershed algorithm, 
adaptive threshold and bubble skeleton is used to regroup 
arcs that belong to the same bubble. Finally, the ellipse 
fitting technique with the inner bubble information are 
exploited to reconstruct the missing parts of each individ-

ual bubble. The results show that the proposed method 
can accurately measure the bubbly flows at a void frac-
tion up to 18 %. More recently, a robust approach to ana-
lyze complex images of large overlapping bubble clusters 
is proposed in [33]. In this study, Langlard et al. provided 
an automated technique called global segment detection 
(GSC) and sub-clustering process to group the edge seg-
ments that belong to the same bubble. Their approach is 
both efficient in terms of ellipsoidal bubble detection and 
in terms of computing performance due to the paralleliza-
tion potential offered by the sub-clustering process.  

Overall, these techniques remain limited regarding 
their robustness to analyze large overlapped bubble clus-
ters in dense bubbly flows. Moreover, the processing of a 
large size/number of images and the online monitoring of 
bubbly flows require significant improvements in compu-
tation speed of algorithms. This motivated us to research 
a more valuable approach both in terms of results accura-
cy and computation time, to efficiently analyze high void 
fraction bubble flow images.  

This paper seeks to address the aforementioned chal-
lenges. In this study, we introduce a fully automated 
technique for the recognition of spherical/ellipsoidal 
highly overlapping bubbles.  

The remainder of this paper is structured as follows: a 
description of the proposed algorithm is given in the first 
Section. Experimental results obtained with our method 
and comparisons with those of the state of the art are 
shown in Section 2. Finally, conclusions are given in the 
last Section. 

1. Methodology description 

The basic outline of the proposed approach for over-
lapping spherical / ellipsoidal bubbles segmentation and 
reconstruction is described in brief in Fig. 1. Starting 
from a gray level image, the recognition process is car-
ried out in three main steps: 

1) splitting the image into regions of interest (ROI) 
which either contain an individual bubble or a cluster 
of bubbles; 
2) contour segmentation of overlapped bubbles and 
3) arcs grouping for bubble shape reconstruction. 

 
Fig. 1. Image processing sequences  
for overlapped bubbles recognition 
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1.1. Bubbles classification 

Given a gray level image as input, our recognition 
process starts with building an image edge map and ROI 
identification in order to classify bubbles into single bub-
ble and bubble cluster.  

Generally, most of the algorithms discussed above 
starts by detecting edges of bubbles, and then uses the edge 
map for further high-level processing. Most of traditional 
edge detection operators use preprocessing approaches 
such as filtering to remove noise and a threshold to low-
level feature extraction. Nevertheless, there are several 
drawbacks in the performance of these techniques. The 
performance of thresholding approaches is limited by the 
bubble size, noise, as well as the intensities difference be-
tween the bubble and the background. Minimizing noise by 
filtering operations results in blurred and distorted bounda-
ries. Moreover, the performance of these detectors depends 
significantly on the shape of the object. The authors in [34] 
showed that their detection efficiency decreased to around 
54 % in the case of a circular object. Due to these difficul-
ties, preprocessing step must be applied so as to not distort 
or suppress the signal of interest, and the most effective so-
lution is to adopt an approach that completely prevents the 
preprocessing step. In this study an accurate edge detection 
algorithm performing in real-time developed by the authors 
is used. This technique is based on the exploitation of raw 
images in order to preserve all features details until the fi-
nal phase of treatment. The principle of this detector is de-
scribed in [35]. 

The outline of each closed object is presented in two 
forms: a vector consisting of the coordinates of all con-
tour pixels and a set of edge segments building based on a 
polygon approximation technique described in [36], each 
consisting of a linear and contiguous pixel chain. The set 
of segments will be used later in the rest of the algorithm 
in order to accelerate the computation time. Fig. 2 illus-
trates an example of the edge detection results. 

a)      b)  
Fig. 2. Bubbles contours detection results: a) conventional edge 

map, b) the set of edge segments  

Then, the contour image is split into small image 
patches containing either a solitary bubble or an overlap-
ping bubble cluster. Each ROI is presented by its corre-
sponding bounding box and its label. 

Once extracted ROI are available, an identification 
step is carried out to determine whether this ROI contains 

an individual bubble or a bubble cluster. Since the bub-
bles studied in this work have a circular shape, the single 
bubbles are defined by a roundness factor computation. 
The roundness is determined using the following formula: 

2

4 A

S


  . (1) 

With A is the object area and S its perimeter. Note 
that a circular bubble has a roundness of unity.  

However, adopting the roundness criterion only to de-
tect overlapping bubbles has some obvious drawbacks. 
For example, in the study of Lau et al. [28] an image 
patch is defined as a solitary bubble if the roundness fac-
tor is < 1.25. This predefined threshold makes their ap-
proach not fully automatic, since it cannot be applied in a 
general case. Also, in some cases, a bubbles cluster ROI 
may have a roundness of unity like a single bubble. 

In order to avoid misclassification and achieving an au-
tomatic recognition process, all ROIs which have a unit 
roundness are further processed with the Euclidean Dis-
tance Transform (EDT) operator [37]. An ROI is classified 
as a single bubble image if it has a single local maximum. 
The roundness computation combined with the DT ensure 
an accurate and automatic classification of bubbles images. 

1.2. Segmentation of overlapping bubbles 

After classification, the second step is to separate the 
boundaries of overlapping bubbles. This step is per-
formed in two subsequent operations: 

1) classification of overlapping bubbles ROI into 
touching bubbles and communicating bubbles and 
2) contour splitting of communicating bubbles based 
on a concavity analysis.  

Classification of overlapping bubbles ROIs 

An example of overlapping bubbles ROI obtained 
from the previous step is illustrated by Fig. 3. We can 
clearly see that an image patch may contain either touch-
ing bubbles in just one point (Fig. 3a) or a completely 
overlapping bubbles that we have named communicating 
bubbles (Fig. 3b). 

a)     b)  
Fig. 3. Examples of overlapped bubbles ROI: (a) three touching 

bubbles and (b) two communicating bubbles 

In order to distinguish these patches, the edge pixels of 
each ROI are arranged in anticlockwise direction starting 
from the leftmost point. An edge pixel is defined as a con-
tact point if its coordinates are repeated twice in the list. If 
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none contact point is found, the ROI will be defined as 
communicating bubbles. Otherwise, this ROI will be de-
fined as touching bubbles. An example of results for 3 
touching bubbles is illustrated by the following Fig. 4. 

The number of single bubbles in a touching bubbles 
ROI is the local maximum number in its Euclidean Dis-
tance Transform (EDT) [37].  

 
Fig. 4. Example of 3 touching bubbles detection process 

Contour splitting of communicating bubbles 

As mentioned above, a concavity analysis will be per-
formed in this study to separate overlapping bubbles. The 
concavity-based techniques consider outlines and shapes 
of objects to detect separate points instead of gray level 
intensities. Currently, numerous classical techniques can 
be exploited to detect concave points such as dominant 
points detection by polygonal approximation technique 
[38], the detection of local minima in the curvature func-
tion [39], extracting the maximum curvature points from 
the concave region of the contour based on the definition 
of convexity and a sliding variable size rectangular win-
dow [40], or using corner points and an area ratio of a 
circular mask [41], and so on. However, most of these 
techniques suffer from considerable computations, inac-
curacy and are not suited to the segmentation of a large 
number of overlapping bubbles. In order to overcome the 
aforementioned challenges, a method based on angle fea-
ture and a linear correlation coefficient to detect concave 
points is proposed in this study.  

To reduce the calculation time, the degree of concavi-
ty is measured between edge segments extracted in the 
first step of our algorithm. Hence, the total number of 
points exploited to calculate concaveness value is de-
creased. Then, the computation time will be decreased.  

Given a set of edge segments,  

  , | 1, 2, ...,i i iE s ps pe i n  , 

where n is the number of edge segments and si is the ith 
segment on the contour with a start and end points psi and 
pei, respectively. The concavity of a candidate point pi on 
the boundary is measured as follows: 

1( )i i i ip ps pe pe    , (2) 

where pi
 = pei

 = psi+1 (the end point of a segment is the 
start point of the next segment). 

A point pi is qualified as concave if it meets both the 
following criteria: 

(1)  (pi) < th (th is a threshold angle obtained from 
training phase and it was set to 130 °). 

(2) the line 1i ips pe  does not reside inside the bubbles. 

The second criteria is used to avoid misjudgment. 
Although a point pi has a large concavity, it may not be 
located in the real concave area. The second rule guaran-
tees that only a real concave point is selected. 

However, as shown in Fig. 5, concave points can be 
divided into two main kinds: obvious and unobvious 
points. Obvious points can be easily detected by angle 
feature due to its sharply gradient change (Fig. 5a). 
While, the curvature change in the case of an unobvious 
point is small (Fig. 5b). It is hard to detect it by angle 
proprieties only.  

  
Fig. 5. Concave points detection: (a) obvious points detection 

and (b) unobvious points detection 

Thus, to measure the slope change of si and si+1, a lin-
ear correlation coefficient of the point (pi) is computed as 
follows: 

1
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 (3) 

where (xi, yi) are the coordinates of the point pi and ( , )x y  
are the mean values of psi, pi and pei+1.  

1 corr ( ) 1.ip    

There is a high possibility that the 3 points (psi, pi and 
psi+1) are on the same line when |corr (pi)| approaches 1. A 
point pi is classified as concave if it satisfies the follow-
ing two rules: 
(1) |corr (pi)| > corrth (where corrth is a coefficient thresh-

old obtained from training phase. Experimentally, it is 
set to 0.97). 

(2) 1i is s 
 > disth (where 1i is s  is the distance between psi 

and pei+1 and disth is a distance threshold obtained 
from training phase. Experimentally, it is set to 6).  

The first constraint is easy to fill. When the 3 points 
are closed, so distance criterion is applied. This constraint 
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will decrease the concave point detection error caused by 
the noise or the small turn produced by digitization.  

By combining these two methods, the accuracy of 
concave points detection in a cluster of overlapping bub-
bles is significantly improved. Fig. 6 illustrates an exam-
ple of using the proposed outline segmentation approach 
to separate the overlapped bubbles boundaries. The con-
cave points detected by the angle proprieties only are 
highlighted by squares. The concave points detected by 
both methods are highlighted by lozenges.  

(a)    (b)  
Fig. 6. Example of concave point extraction result: a) original 
image, b) concave points extraction: the squares are obvious 

concave points and the lozenges are unobvious concave points 

Following the concave points detection, we now split 
the contour into n segments (where n is the total number 
of concave points) by every two adjacent points on it in 
the anticlockwise direction. Each segment is assumed to 
belong at least to one bubble embedded in the cluster, and 
a bubble can potentially include several segments. As a 
consequence, it is mandatory to find the best combination 
of n segments into m bubbles in order to extract the most 
probable cluster decomposition. 

1.3. Arcs grouping and bubbles reconstruction 

The next step in our algorithm addresses arcs group-
ing to merge all contour arcs that belong to the same bub-
ble and circle /ellipse fitting to reconstruct the missing 
part of each bubble. 

Bubbles boundaries are split into a set of contour arcs 
by concave points denoted {a1, a2, ..., an}, where n is the 
number of arcs. ai is the contour arc limited by concave 
points ci and ci+1. ai is connected with ai–1 and ai+1. To re-
duce the computation time, two cases are discussed ac-
cording to the total number of concave points nc: 

If 2 ≤ nc ≤ 3, contours are split into 2 or 3 arcs. Any two 
arcs are linked by a concave point. Hence, grouping 
process is not needed and each contour arc is fitted to 
circle /ellipse directly.  

If nc > 3, {a1, a2, …an} are classified into groups by arcs 
grouping rules.  

In this paper, we introduce an efficient method for bub-
ble arcs grouping inspired from the EDcircles algorithm 
[42]. This method is chosen due to its ability to produce a 
high accurate result in real-time. Given a set of contour 
arcs, the algorithm performs into two main steps: (1) join-
ing the arcs into circle /ellipse candidates and (2) validating 
these candidates based on the Helmholtz principle. 

In order to reduce the computation time and enhance 
the efficiency of our method; we have established a set of 
possible arcs that may be joined together before starting 
the arcs grouping process. Based on the basic rule of con-
tour arcs grouping, two neighborhood arcs that are linked 
and split by one concave point should not be set into the 
same group. Thus, the grouping rules are applied only to 
non-neighboring arcs. Therefore, the number of candidate 
arcs in the grouping process will be decreased. Then, the 
computation time will be also reduced.  

Arcs grouping 

Fig. 7 shows the flowchart of the main steps of this 
method.  

The idea is to look for arcs with similar radii and 
nearby centers, and to establish a list of candidate arcs 
that may belong to the same bubble. Given an arc ai to be 
joined with a candidate arc aj, two scenarios are possible: 
spherical bubble detection and elliptical bubble detection.  

In the two cases, the following two criterions must be 
satisfied: 

(1) Radius difference constraint: the difference of radius 
between ai and the candidate arc aj must be within a 
predefined threshold.  

(2) Center distance constraint: the distance between the 
centers of ai and aj must be within a predefined 
threshold.  

 
Fig. 7. Flowchart of the arcs grouping scheme 

The least squares fitting algorithm is used to find the 
radius and the centers of the arcs. The threshold values 
must not exceed 25 % of ai’s radius for the case of a circle 
and 50 % of ai’s radius for an ellipse. As an example, in 
the case of a spherical bubble searching, if ai’s radius is 
100, then all possible arcs whose radii are between 75 and 
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125 and their centers are within 25 pixels of ai’s center 
would be taken as candidates for arc join. 

Once the candidate arcs have been selected, the sub-
sequent step is to join them one by one with the arc ai by 
fitting a circle /ellipse to the pixels making up these arcs 
using the least squares circle fit algorithm or direct least 
square fitting of ellipses. Then we decide if the fitted cir-
cle /ellipse is taken as a candidate bubble. Thus, the ratio 
between the total number of pixels of the joined arcs and 
the circumference of the fitted circle /ellipse is computed. 
If this ratio is greater than 50 %, the fitted circle /ellipse is 
taken as a candidate else it is rejected. 

The following fig. 8 shows an example of using the 
above flowchart to determine bubble number in a cluster 
of four overlapping bubbles. With the contour splitting 
algorithm described above, the cluster boundary is divid-
ed into four arcs. These arcs are first grouped into two 
possible groups based on the basic rule of contour seg-
ments grouping mentioned above: group 1 (arc 1 + arc 3) 
and group 2 (arc 2 + arc 4). Then, the two grouping rules 

(radius and centers constraints) are verified for the two 
candidate groups. In the first group arc 3 is selected as a 
candidate to be joined with arc 1. Arc 3 satisfy the radius 
constraint ((r 1 – r 3) < (r 1/4); r 1 and r 4 represent arc 1 
and arc 3 radius, respectively), but fails the center con-
straint ((c 1 – c 3) > (r 1/4); c 1 and c 3 represent arc 1 and 
arc 3 centers, respectively). So, these two arcs will not be 
joined together and each arc will be considered as a sepa-
rated bubble and it will be fitted by a circle/ellipse to re-
construct the missing parts. In the second group arc 4 is 
selected as a candidate to be joined with arc 2. Arc 4 satis-
fy both radius and centers constraints. Thus, the two arcs 
will be joined together and fitted by an ellipse to recon-
struct the missing part. At this stage, the four arcs are 
matched to three candidate bubbles. The last step is deci-
sion if these bubbles are well identified or not. Thus, the 
ratio between the length of joined arcs and the circumfer-
ence of the fitted circle/ellipse is computed. If it is greater 
than 50 %, then the fitted circle/ellipse is taken as well 
identified bubble else it will be rejected.  

 
Fig. 8. Arcs grouping and bubbles reconstruction process 

Circle/ellipse validation by Helmholtz principle 

Just because many arcs can be gathered in cir-
cles/ellipses does not imply that all candidates are valid se-
lections. Thus, as a last step, a validation algorithm based on 
the Helmholtz principle is used to remove invalid selections 
and return only the valid ones. The basic idea is to calculate 

the level orientation field of an image and search a contigu-
ous set of pixels with similar line orientation. The alignment 
between a pixel and a circle is defined by the adaptation of 
the alignment between a pixel and a segment proposed in 
[42]. A point (pi) on the boundary of a given circle/ellipse is 
aligned with it if (pi) is aligned with the tangent (T) to the 
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circle/ellipse at that point. Thus, the angle (pi) and angle (T) 
must be within p× degrees with each other if (pi) and the 
circle/ellipse are aligned with a precision p.  

Once all aligned points are detected the NFA (number 
of false alarms) of a circle /ellipse having n points as 
length and k aligned pixels is computed as follows: 

  5, (1 )
n

i n i

i k

n
NFA n k p pN

i




 
  

 
 , (4) 

where N 
5 is the number of potential circles / ellipses in an 

N × N image. The circle /ellipse is accepted as valid if 
NFA (n, k) ≤ ε; otherwise, it is rejected. The epsilon (ε) was set 
to 1, which corresponds to a single false detection by image.  

2. Experimental results and analysis 

In order to assess the efficiency of the proposed 
method, both synthetic and real bubble images were in-
vestigated. In this study, the bubble recognition algorithm 
runs on a computer equipped with an Intel® Core ™ i7-
3770 CPU performing at 3.4 GHZ and 16 GB RAM. For 
the implementation of the code, we used the VS2015 con-
figured with OpenCV 3.0.0. 

2.1. Recognition of synthetic images 

To quantify the performance of the recognition bubble 
approach, we first implement our algorithm to synthetic 

images of bubbles. Indeed, the number of bubbles involved 
in an image is perfectly known and each bubble is fully 
characterized, which is not the case for real bubbles imag-
es.For this purpose, a set of 50 synthetic images of 100 –
 150 overlapping circular and elliptical bubbles was consid-
ered. The semi-minor and semi-major axis (denoted a and 
b, respectively) of the bubble follow a uniform law in the 
intervals [5, 15] and [10, 40] pixels, respectively. 

Fig. 9 shows an example of the results of our recogni-
tion method for an image of this dataset including both 
single and overlapping bubbles. Fig. 9a and 9b illustrates 
the original image and the ground truth regions of all 
bubbles constructed manually, respectively. Fig. 9c and 
9d shows the results of the first step (ROI extraction and 
bubbles classification), Fig. 9e exhibits the concave point 
extraction result and Fig. 9f illustrates the bubbles seg-
mentation obtained with our proposed method. The bub-
bles contours are superimposed on the original image. 
From this figure, it can be seen that all connecting points 
are extracted efficiently by our approach (Fig. 9e). Obvi-
ous (squares) and unobvious (lozenges) concave points 
can be accurately extracted using the method proposed in 
Section.1.2. Satisfactory result for unobvious concave 
points extraction can be obtained by the proposed meth-
od. Also, it is obvious that all bubbles are segmented and 
reconstructed accurately.  

(a)    (b)    (c)   

(d)    (e)    (f)  
Fig. 9. Segmentation result on a synthetic image: (a) original image, (b) ground truth, (c) edge detection and ROI extraction,  

(d) bubbles classification, (e) concave points detection and (f) result of segmentation 

In order to assess the recognition quality of bubbles 
with different degrees of overlapping, the dataset of im-
ages was categorized into three groups: low, medium and 
high. The images of low overlapping degree are charac-
terized by a slight touch among the bubbles. Most bub-
bles overlap in the case of medium overlapping degree. In 
the high degree case, bubbles overlap more severely. The 
efficiency of the proposed approach was compared with 

two methods pulled from the state of the art: the tech-
nique proposed by Zafari et al. [43] and the one proposed 
by Park et al. [44]. For the sake of illustration, an exam-
ple of the results of the recognition process with the three 
techniques applied on three images from the dataset con-
sidered here are compared in Fig. 10.  

In these samples, it is clear that all the bubble clusters 
are mostly well resolved with our algorithm in all images. 
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All the bubbles are correctly identified and reconstructed 
in the case of low and medium degrees of overlapping 
versus 95.34 % in the case of high degree. On the other 
hand, as illustrated in Fig. 10a and 10b, the two tech-
niques from the literature are unable to detect precisely 
all bubbles, especially when a large cluster of bubbles is 
processed: 83.7 % of bubbles are well identified with 
Zafari’s method versus 76.74 % with park’s technique. 

To further evaluate the accuracy of the proposed 
method, it was quantitatively compared with the above-
mentioned algorithms [43, 44]. Three quantitative 
measures metrics were exploited. The first is the percent-
age of accurate segmented bubbles (PA). The second rep-
resents the probability of over-segmented bubbles (PO), 
which estimates the percentage of a bubble that is seg-
mented into several bubbles by the algorithm. The third is 
the probability of under-segmented bubbles (PU), which 
represents the number of un-detected bubbles. The mean 
values of the three metrics obtained with the three tech-
niques for the set of images considered in this study are 
tabularized in Table 1. The adjustable parameters values 

of the two literature techniques were fixed according to 
the author’s recommendations. 

As shown in Table 1, our approach outperforms both 
Zafari’s method and Park’s method. The accuracy is im-
proved by 6.61 % compared with Zafari’s algorithm and 
it is improved by 18.18 % with respect to park’s tech-
nique. The main error of our algorithm is under-detection 
in very high overlapped bubbles images. The two other 
methods suffer from both over-segmentation and under-
segmentation. The Zafari’s method performs better than 
Park’s method in all groups of images. By comparing the 
three metrics values, we can conclude that our algorithm 
is more efficient than the other two techniques. 

Table 1. Comparison of performances of three algorithms 

Method PA (%) PO (%) PU (%) 

Zafari et al. [43] 91.74 3.3 4.96 

Park et al. [44] 80.17 11.57 8.26 

Our method 98.35 0 1.65 
 

(a)        

(b)        

(c)        
Fig. 10. Example of recognition results on a 3 synthetic images with different degrees of overlapping; the left column:  

low degree, the middle column: medium degree and the right column: high degree;  
(a) Zafari et al. [43], (b) Park et al. [44] and (c) our algorithm  
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2.2. Recognition of real bubbly flow images 

In addition to the satisfied results achieved on the 
computer-generated images, our recognition algorithm 
was applied to identify the different bubbles on a set of 
experimental images of gas/liquid flow taken from [45].  

An example of the obtained result is illustrated in 
Fig. 11. From visual observation, it is obvious that all 
bubbles were identified accurately.  

Another example of the bubble identification result is 
shown in Fig. 12. This image exhibits a high ratio of bub-
ble clusters (70 overlapped bubbles). The agreement be-
tween the detected circles/ellipses and the bubble bounda-
ries is very good, 67 correct detected bubbles versus only 
3 bad detections (marked by boxes), so proving the tech-
nique efficiency on real bubbly flow images.  

 
Fig. 11. Performances of our method on an experimental 

image: the bubble contours are superimposed on the original 
image. The bubble on the image border is not considered  

  
Fig. 12. Another example of our method results.  

67 bubbles have been well detected. The boxes highlight the 
three bad detections. The bubble on the image border is not 

considered  

Generally, two cases of bad recognition are observed. 
The first case occurs when the bubble cluster shape is 
very complex, so some concave points may be missed. In 
addition, the shape of the bubbles has a significant devia-
tion from a circle or an ellipse, which is not the scope of 
this study. The second one concerns bubbles with blurred 
contours. 

Also, the efficiency of the proposed method was quan-
titatively compared with the technique proposed by Zafari 
et al. [43]. The total number of bubbles in 5 samples and 
the number of the bubbles correctly identified by each of 
techniques in comparison are tabularized in Table 2.  

Overall, our proposed algorithm is the best performer 
for all images. Fig. 13 illustrates one exemplary result of 
the recognition process performed by our approach and 
the competing technique. This figure is an example of 
multiple bubble clusters. As we can see, the proposed 
technique identifies most of the touched bubbles in this 
image where Zafari’s method suffers from under-
segmentation. From 131 bubbles included in this image, 
our method gives 118 bubbles well detected and separat-
ed versus only 73 detected by Zafari’s algorithm. Due to 
the fact that there are wide and strongly overlapped bub-
ble clusters, the competing method fails to identify each 
single bubble included in this image. This underperfor-
mance compared to our approach is mainly due to the 
concave point detection algorithm exploited by Zafari et 
al. [43]. In their study, the concave points are detected 
based only on the features of angular and concavity. This 
method fails to give satisfactory concave points, especial-
ly in the case of blurry bubbles or highly overlapped bub-
ble clusters. 

Table 2. Rate of well segmented bubble 
in terms of total number of bubbles 

Samples 
Total # 
of bub-

bles 

Total # of the cor-
rectly identified 

bubbles 

Percentage 
% 

Our 
method 

Zafari 
[43] 

Our 
method 

Zafari 
[43] 

Image 1 53 53 46 100 86.79 
Image 2 93 87 80 93.54 86.02 

Image 3 131 118 73 90.07 55.72 

Image 4 150 143 122 95.33 81.33 
Image 5 200 192 138 96 69 

Fig. 14a and 14b shows the results of concave points 
detection by our algorithm and Zafari’s method, respec-
tively, for the same image shown in Fig. 13. It is ob-
served that in the case of many touching bubbles (sur-
rounded by boxes in Fig. 14), Zafari's method failed to 
detect all concave points especially unobvious one. Due 
to the little change of the concavity, it is hard to detect 
them with the concavity rules only.  

However, the proposed concave point detection algo-
rithm is more effective and stable. There are fewer unde-
tected or inaccurately detected concave points with our 
algorithm, which is evident by comparing Fig. 14a and 
14b. As shown in Fig. 14a, most of obvious concave 
points are well detected and they lie at the turn of the 
bubble edge. Satisfactory unobvious concave point detec-
tion result can be obtained by the proposed algorithm 
(represented by lozenges in Fig. 14a). In addition, our 
method requires less computation time as the total num-
ber of points exploited to calculate concaveness value is 
decreased.  

Otherwise, the computation times of our algorithm 
and Zafari’s method running on the computer above-
mentioned were measured for an image size in the inter-
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val [64 Kpx, 1 Mpx]. It was found that the average execu-
tion time per image ranged from 8 to 22 s and from 4 to 
12 s with Zafari’s algorithm and the proposed technique, 
respectively. These results revealed that our method is 
computationally efficient. Moreover, computation time 

could be significantly decreased by the parallelization of 
the algorithm over Multiprocessor and/or GPUs. 

To summarize, these comparison results allow us to 
conclude that our algorithm is more stable and efficient 
than the other methods, for both synthetic and real images.  

(a)    (b)    (c)  
Fig. 13. Performance comparison: (a) original image, (b) Zafari’s method and (c) our method.  

The boxes highlight the bad detections (the colors are inverted due to printing issues) 

(a)    (b)  
Fig. 14. Concave points detection performance comparison: (a) our method (the squares are obvious concave points and the 

lozenges are unobvious concave points) and (b) Zafari’s algorithm 

Conclusion 

A new multi-level approach to segment and reconstruct 
highly overlapped bubbles is proposed in this paper. In the 
first step, the proposed method classifies the images patches 
of overlapped bubbles into touching and communicating 
bubbles. This step remarkably reduces the computation time 
since the rest of the algorithm will be applied to the overlap-
ping bubbles only. Then, the communicating bubbles patch-
es are passed through a segmentation process in order to 
separate clusters into edge segments based on a concavity 
analysis. An effective method for obvious and unobvious 
concave points detection is introduced to guarantee accuracy 
of our algorithm. The last step addresses grouping of differ-
ent segments that belong to the same bubble and cir-
cle/ellipse fitting to reconstruct the bubble shape.  

The proposed method was first validated using syn-
thetic images. A further assessment is performed by com-
paring our algorithm to two techniques from the state of 
the art. This comparison has highlighted significant en-
hancements: 98 % of the segmented bubbles were correct 
for the proposed algorithm compared to the proportion of 
80 % (respectively 91 %) for the one of Park et al. [44] 
(resp. Zafari et al. [43]). 

An application of the proposed technique to high-speed 
real air bubble images has highlighted the ability of this 
approach to resolve highly overlapped bubble clusters.  

Last but not the least, our approach is computationally 
efficient. For example, the average execution time for a 
typical image (1 Mpx, 150 overlapping bubbles) is about 
12 seconds on an Intel® Core ™ i7-3770 CPU.  

Due to its ability to be parallelized, computational 
time can be significantly reduced by parallelization on 
GPU (the graphic processing units), thus opening up per-
spectives for real time monitoring of two-phase flow pro-
cesses in a wide range of industrial applications. Future 
work will focus also on the analysis, 3D reconstruction 
and tracking of more complex shape of the bubble (when 
the bubble does not exhibit a spherical or elliptical shape 
but a more irregular shape).  
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