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Abstract 

Some computer vision tasks become easier with known camera calibration. We propose a 
method for camera focal length, location and orientation estimation by observing human poses in 
the scene. Weak requirements to the observed scene make the method applicable to a wide range 
of scenarios. Our evaluation shows that even being trained only on synthetic dataset, the proposed 
method outperforms known solution. Our experiments show that using only human poses as the 
input also allows the proposed method to calibrate dynamic visual sensors. 
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1. Introduction 

Video surveillance is an essential part of modern ur-
ban infrastructure. It makes cities safer, simplifies traffic 
control and urban planning. Thus surveillance systems 
have to see and automatically analyse as much as possible 
through hundreds of thousands of high dimensional arti-
ficial eyes. Understanding of scene geometry is one of the 
basic tasks that should be solved as it simplifies the fur-
ther data processing stages ([9]). This task has to be 
solved automatically without any interaction with an op-
erator even for static cameras because a camera orienta-
tion may change unexpectedly from time to time due to 
other people's actions. 

A common scene in the CCTV scenario is composed 
of a static camera, a single ground plane, people and ob-
stacles such as buildings, benches, trash bins etc. In this 
case camera location, orientation and internal parameters 
provide sufficient information for retrieving scene geom-
etry and, for example, filtering detection hypotheses. 

Looking at the images of pedestrians, a human can 
roughly estimate camera position and rotation (fig. 1), 
since the approximate human height distribution is known, 
and feet of the people in the image are usually located 
close to the ground plane. Similarly to this, we propose an 
algorithm that estimates camera location and orientation 
(and also some of the intrinsic parameters) from human 
pose detections. To make it robust to the variety of possi-
ble detections (due to walking directions, location in the 
scene, height, gait specifics, etc.) we suggest training neu-
ral networks that learn the mapping from the detected hu-
man poses to the camera parameters. Analytical solutions 
are usually based on some models of the observed world 
and require the input data to be measured precisely. More-
over, an analytical solution that takes into account the great 
variability of the detected human poses would be very so-
phisticated. Unlike analytical solutions, the neural net-
works do not rely on any restrictions, rules or features ex-
plicitly; instead they directly reveal the dependencies be-
tween the (possibly noisy) input data and the target values. 
This allows us to avoid modeling complex dependencies 
between human pose keypoints locations and camera pa-
rameters, filtering outliers and dealing with incorrect detec-

tions, as neural network can learn to do this from the large 
amount of training data. 

(a)    (b)  

(c)  
Fig. 1. (a) A part of the CCTV scene; (b) scene geometry can be 
estimated just from detected human positions and scale without 
any background information; (c) extrinsic camera parameters 

The proposed algorithm automatically estimates both 
camera extrinsic parameters (location and view direction) 
and focal length. The only information it requires is a set 
of human poses specific to people in the observed scene. 
The algorithm makes no additional assumptions about the 
input data. Moreover, in contrast to the traditional cali-
bration methods, it does not require any interaction with 
an operator (such as showing checkerboard pattern in a 
camera field of view or explicitly specifying size of some 
object present in the scene) which is crucial for the ap-
plicability of the method to the calibration of modern sur-
veillance systems. Experiments show that it can also be 
applied to calibrate event-based cameras ([6]).  

Our main contributions are: 
1) An algorithm that estimates both focal length 

and extrinsic parameters of a static camera; 
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2) A method to calibrate dynamic vision sensor 
even without specialized pose detectors; 

3) A way to tune parameters of the proposed meth-
od without real labeled data. 

2. Related work 

Recent camera calibration methods can be split into 
two groups. The first group focuses on localization of 
three orthogonal vanishing points, which makes such 
methods applicable to the Manhattan world scenes. 

A fundamental relation between camera focal length and 
location of three orthogonal vanishing points (TOVPs) was 
discovered in [5]. Li et al. [13] suggest a method that esti-
mates focal length by parallel lines detection, which is most-
ly applicable to scenes with buildings, roads or other man-
made static structures. Sochor et al. [20] and Dubska et al. 
[7] solve the task of traffic surveillance camera calibration 
by extracting parallel lines from trajectories of cars on dif-
ferent lanes or fitting 3D models to detected cars. Lv et al. 
[16] and Li et al. [12] extract vertical lines from person sil-
houettes. Huang et al. [11] extract parallel lines from human 
feet detections, assuming the humans move along the line 
with steps of equal length. The quality of these methods de-
pends on the presence and behavior of objects in the scene. 

The second group skips TOVPs localization step and 
estimates camera parameters directly from the input image. 
Several works (Workman et al. [23]; Workman et al. [24]; 
Hold-Geoffroy et al. [10]; Yan et al. [25]) estimate focal 
length or horizon line from raw pixel intensities using 
Convolutional Neural Networks (CNNs). However the pa-
rameters estimated by these methods are insufficient to re-
cover the scene geometry. Shalnov et al. [19] use CNN that 
takes focal length and human head detections as input and 
estimates camera location and orientation. The latter ap-
proach suits well the typical surveillance scenarios, how-
ever it requires focal length to be known. On the other 
hand, this approach does not use intensity values, thus can 
be applied in event-based vision [17]. 

3. Proposed algorithm 

3.1. Pinhole camera model 

We use a simple pinhole camera model. Under the as-
sumption of zero skew and unit sensor aspect ratio, the 
matrix of intrinsic parameters is given by 

   0   

0      ,

0    0    1

f px
f py

 
 
 
  

 (1) 

where f is the focal length value evaluated at pixel scale 
and (px, py) is the principal point. Moreover, we assume 
that the principal point is located in the center of the im-
age, and that the distortion is negligible (note that images 
with known distortion can be automatically corrected as 
in [26] and then used for calibration). These assumptions 
are common for similar works in the field (i.e. [14, 15]). 
Therefore the focal length is the only unknown intrinsic 
parameter. 

Camera orientation includes three angles known as tilt, 
roll and yaw. Yaw angle does not affect the scene geometry, 

thus assumed to have zero value. Camera location is fully 
specified by height above the ground plane. 

3.2. Algorithm overview 

The proposed algorithm estimates camera parameters 
from location of people joints on the image plane. We 
construct this mapping in form of convolutional neural 
network trained on the synthetic dataset. 

The proposed algorithm consists of four stages 
(Fig. 2). At the first stage we apply OpenPose detector 
([4, 22]) to estimate human poses on each frame. The first 
CNN (Coarse Focal length Network, or CFN) uses the 
constructed set of human poses to produce an initial 
coarse estimate of the camera focal length. Both the esti-
mate and the set of poses are fed to the Location and Ori-
entation Networks (LONs) that compute the camera loca-
tion and orientation parameters separately. At the last 
stage focal length is refined with another CNN named 
Refinement Focal length Network (RFN). 

 
Fig. 2. The scheme of the proposed method. Rectangular boxes 
depict neural networks. Arrows show CNNs inputs and outputs 

All the forementioned networks for camera parame-
ters estimation have similar architectures. They consist of 
2 convolutional and 2 fully connected layers. Since 64 
pose detections are used for camera parameters estima-
tion, the input is a 8×8×28 tensor, where the detections 
are placed in a 8×8 grid, while the third dimension repre-
sents a single pose (there are 14 keypoints, each of which 
is determined by 2 coordinates). The previously estimated 
camera parameters are concatenated with the computed 
features just before the first fully connected layer in Ex-
trinsics and Focal length refinement CNNs (Fig. 3). 

 
Fig. 3. An architecture of the proposed network estimating 

extrinsic parameters (LON) 

3.3. Training dataset 

A large labeled dataset of surveillance videos with di-
verse known camera parameters is required to train the 
CNNs. The sophisticated calibration process makes con-
struction of such a dataset an extremely challenging task. 
However, only a set of human poses and calibration pa-
rameters are required at training stage, so the algorithm 
can be trained on any set of realistic human poses.   
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We define a unique set of camera parameters as a sce-
ne. Our synthetic dataset consists of 200000 such scenes, 
each of which contains 64 human figures standing on a 
ground plane. The algorithm uses only the human pose 
detector results, thus the dataset containscamera calibra-
tion parameters and 3D locations of human body key-
points in the scene. 

We augment the set of human poses by adding a 
slight noise to the 3D position of each joint. 

We choose camera parameters at random from uniform 
distribution with supported range presented in Tab. 1. 

Tab. 1. Camera parameters description and limits 

Parameter Supported range 

Focal length(pixels) (10, 5000) 

Tilt (degrees) (0, 90) 

Roll (degrees) (–15, 15) 

Height (cm) (10, 2000) 

3.4. Human pose model 

We use CMU Graphics Lab Motion Capture Database 
[1] that contains 3D positions of joints of walking and 
standing people to simulate results of a human pose de-
tector. We choose disjoint sets of actors to generate train 
and test subsets of our dataset. Human pose is defined by 
locations of 14 joints corresponding to knees, elbows, 
shoulders and so on. 

In real world scenario person has similar poses on 
neighbouring frames. Thus to reduce the gap between real 
and synthetic data, we use not only single poses, but also 
pose sequences from the motion capture database men-
tioned above. Therefore the synthetic samples usually 
have several isolated detections and several detection se-
quences, which approximates typical detector result on a 
real surveillance video. The ratio of the number of isolat-
ed detections and detection sequences varies randomly 
between the samples. An example of synthetic data is 
shown below (Fig.4). It also can be seen that synthetic 
data contain keypoints of poses of people walking in var-
ious directions. 

4. Architecture choices 

This section outlines our architecture explorations. 
The lack of labeled real surveillance videos does not al-
low us to choose the network architecture without overfit-
ting. Thus we use a validation part of the constructed syn-
thetic dataset to approve the choice of the architecture. 

4.1. Linear layers 

We begin by constructing simple networks to estimate 
camera parameters from pose detections. The aim of this ex-
periment was to find out whether convolutional layers usage 
is beneficial for camera parameters estimation. Therefore we 
trained several networks with and without convolutional 
layers and compared the results. For the sake of brevity we 
describe just two of them, each best in its class. 

The first network, Fully-Connected network, consists 
of 4 dense layers. Each layer has 256 neurons. The second 
network has two convolutional layers of 32 and 64 filters, 

which are followed by two dense layers. The networks 
were trained separately on the same synthetic data until 
their validation losses stopped decreasing, which took 
around 200 epochs in both cases. As Table 2 (columns 2 
and 3) shows, Convolutional network significantly out-
performs Fully-Connected. Therefore we use convolutional 
layers in all networks in subsequent experiments. 

(a)    (b)  
Fig. 4. (a) Body keypoints scheme; (b) visualization  

of synthetic data example 

Tab. 2. RMSE error on test synthetic data 

Parameter 

Fully-
Con-

nected 
network 

Convolutional 
network 

Separate 
convolutional 

networks 

Focal length 
(pixels) 670.13 445.11 439.50 

Tilt (degrees) 8.59 3.72 3.32 

Roll (degrees) 3.17 2.41 2.18 

Height (cm) 288.16 210.77 204.79 

4.2. Number of networks 

We then explore whether it is better to estimate all the 
parameters with one network or with independent net-
works for every parameter. 

We compare the following options: (1) a network 
which output is Dense layer with 4 neurons (since there are 
4 estimated camera parameters); (2) a set of 4 independent 
networks. The results (Tab. 2, columns 3 and 4) show that 
the independent networks perform slightly better. 

4.3. Pipeline 

We found that the overall quality of the model can be 
improved by resolving visual ambiguity of focal length 
and camera height. Joint parameter estimation can be dif-
ficult due to visual ambiguity of focal length and camera 
height: for instance, simultaneous increase of focal length 
and camera height can result in a scene looking very 
similar to the original one, except for some fine details 
(i.e. objects looking more or less flattened). 

We then conducted experiments on how the prior esti-
mate of focal length influences extrinsics estimation quality, 
and vice versa. We studied not only the case of the ground 
truth focal length/extrinsics as an additional input, but also 
of its coarse estimate. For instance, as previous experiments 
show, it is possible to predict focal length from pose detec-
tions with RMSE about 440 pixels. To find out whether this 
estimate can be useful, we added to ground truth focal length 
random noise with mean value of 500 and gave it as an addi-
tional input to the extrinsics estimation networks. For focal 
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length estimation with extrinsics prior, we used the follow-
ing mean noise values: 10 degrees for tilt angle, 5 degrees 
for roll angle and 200 cm for height. 

Our experiments show that prior knowledge of other 
camera parameters is indeed beneficial for both focal 
length (Table 3) and extrinsics estimation (Table 4). 

Tab. 3. RMSE for focal length est. network with and without 
extrinsics estimate as an additional input 

Parameters Detections 
only 

+ noisy ex-
trinsics 

+ ground truth 
extrinsics 

Focal 
length 439.5 341.7 215.7 

Tab. 4. RMSE for extrinsics est. network with and without focal 
length estimate as an additional input 

Parameters Detections 
only 

+ noisy fo-
cal length 

+ ground truth 
focal length 

Tilt 3.32 3.07 2.07 

Roll 2.18 2.11 2.07 

Height 204.79 169.04 144.13 

We use these findings in the following way: initially 
we have only pose detections, so we get a coarse focal 
length estimate from them. It is then given to the extrin-
sics nets, which produce relatively good extrinsics esti-
mation. At the last stage, the extrinsics estimation is used 
to get refined focal length estimation. 

4.4. Number of pose detections 

The plane can be defined with three points, so there 
are no theoretical limitations to number of people used 
for calibration, as every human pose detection we consid-
er consists of 14 keypoints which carry sufficient infor-
mation. However human poses vary greatly, as well as 
human height and shape, and pose detector results aren't 
perfect. Therefore relying on a small number of detec-
tions can be error-prone. 

We trained our networks on different number of input 
detections from 4 to 64. As can be seen in Fig. 5, RMSE 
errors gradually decrease with input detection number in-
creasing, and after detection number reaches 16, this de-
crease becomes more gradual. 

(a)   (b)  

(c)  (d)   
Fig. 5. RMSE for various input detections number: (a) focal length RMSE; (b) tilt RMSE; (c) roll RMSE; (d) height RMSE 

5. Evaluation and results 

We trained every network for 300 epochs using Adam 
optimizer on the constructed synthetic dataset with L2 loss.  

5.1 Dealing with false positive detections 

While a lot of person images can be found in the real 
surveillance video, the proposed algorithm uses just 64 of 
them to make a single prediction. Thus a problem of 
choosing in some sense best person observations arises. 
One possible solution is to use the pose detector confi-
dence as a quality criterion. On the one hand, greater con-
fidence leads to exclusion of false detections that can 
possibly confuse the algorithm. On the other hand, it 
should be easier to infer scene geometry from a set of de-
tections that are scattered all over the scene. Experiments 
show that high-quality detections tend to be located very 

close to each other. Therefore some trade-off between de-
tection confidence and positions has to be found.  

Our experiments show that the best results can be 
achieved from the following procedure: 

1) Construct set of all presented poses;  
2) Filter out the poses whose confidence is less than 0.1; 
3) Sample at random 300 subsets of size 64 of the 

remaining pose detections;  
4) Estimate camera parameters for each subset sepa-

rately; 
5) Compute average on each parameter separately. 

5.2. Evaluation datasets 

5.2.1. RGB data 

We evaluate the proposed method on 31 video se-
quences from PETS 2006 (4 different cameras), PETS 
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2007 (4 different cameras), PETS 2009 (8 different cam-
eras), EPFL Campus & Terrace [3, 8] (7 cameras) and 
3DPeS [2] (8 cameras) datasets. Some of these sequences 
violate the assumption of a single ground plane (see Fig. 
6 for example). 

The calibration parameters used as ground truth were 
actually obtained by the authors of the respective datasets 
with Tsai calibration method [21]. Therefore the compar-
ison to the ground truth is effectively a comparison with 
well-known classical method [21]. Since the goal of our 
work was to develop a method for fully-automatic cali-
bration of hardly accessible cameras (and DVS sensors 
that cannot be calibrated at all with traditional methods) 
rather than to achieve superior calibration precision, we 
considered it possible to use Tsai calibration results as 
ground truth. 

5.2.2. Event-based data 

Dynamic Vision Sensor (DVS) is a type of sensor that 
records events of brightness change at every pixel at a very 
high rate (thousands frames per second). These sensors 
completely ignore static objects in the scene, which makes 
most of existing calibration methods inapplicable for them. 

To our knowledge, there are no DVS data with known 
camera calibration suitable for out method evaluation. 
Therefore we simulate such data from the same datasets 
we use for RGB evaluation using the method from [17]. 

We convert an event stream back to “images” by sum-
ming up event polarities in a temporal window. This ap-
proach suppresses noise and some features of the detected 
objects, but the silhouettes are usually visible (Fig. 7). 

 
Fig. 6. Example of visualized pose detection used for camera 
parameters estimation (PETS 2006, camera 2). The ground 
plane computed with the predicted calibration parameters is 

shown in green (each square side is 1 m). The assumption of a 
single ground plane is violated by the human detection on the 
balcony. False detections are also present (note the big figure 

in the middle and the figure on the balcony), however the 
estimated ground plane is quite plausible 

Our experiments show that OpenPose [4] detector can 
be applied to these visualized data even despite being de-
signed for ordinary RGB data. It finds less poses in 
event-based versions than in RGB, and the quality of 
such detections is noticeably lower, but our algorithm is 
robust enough to get calibration results for event-based 
data close to those for RGB data (Tab. 5).   

We have simulated event-based stream for all the 
abovementioned RGB datasets. 

5.3. Visual evaluation of the results 

One of the possible applications of calibration is 
ground plane estimation, which can be useful for filtering 
the false detections based on their size and location. Fig-
ure 8 shows that the calibration parameters predicted by 
our method produce rather plausible ground plane.  

 
Fig. 7. A visualized frame of simulated event-based stream  

for one of PETS 2006 sequences 

 

(a)  

(b)  
Fig. 8. Visualization of the ground plane (shown as a grid;  

each square side is 0.5 m) computed with the predicted 
calibration parameters for two PETS videos 
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We also analyzed how the method works if an im-
portant assumption of a single ground plane on which all 
the people in the scene stand is violated. We ran our 
method on several videos with escalators and stairways 
and found that in most cases the people that were not on 
the ground plane were occluded either by escalator rail-
ings or other people located on the ground plane closer to 
the camera. Since the algorithm uses only the detections 
for which all pose keypoints are visible, these detections 
didn’t contribute to the results. Moreover, in many such 
videos the detections that violate single ground plane as-
sumption are rare (see fig. 6 with only one such detection 
for example). Since our algorithm averages the results ob-
tained on random subsets of all detections, as described in 
section 5.1, these detections have a decent chance to be 
chosen only a few times and thus contribute to the result 
less than the normal detections. This may be why roll an-
gle estimation in fig. 6 is plausible despite the detection 
on the balcony. However in scenes similar to the one in 
fig. 9b, where the steps are wide and close to the camera, 
tilt angle estimation seems to be incorrect. This is some-
how expected because the neural network tries to find a 
plane that all the people in the scene, including those on 
the stairs, could be staying on. 

5.4. Comparison with another  
detection-based calibration method 

Comparative evaluation of our approach is slightly 
complicated, mostly due to input data limitations. Our al-
gorithm is targeted on the CCTV scenario, in which the 
cameras can be difficult to access physically, and there 
can be hundreds or thousands of cameras needing calibra-
tion. The traditional methods of camera calibration re-
quire presence of the checkerboard pattern and also need 

human interaction to recover the scale of the scene (i.e. 
via specifying size of some known object). Therefore it is 
difficult to obtain a large amount of data suitable to our 
scenario with ground truth camera calibration known. 
Moreover, the calibration patterns usually do not appear 
in the surveillance videos, so we cannot test the tradition-
al methods on data suitable for our method without access 
to the actual cameras used to record it. Therefore we are 
limited to the comparison to another methods of automat-
ical surveillance camera calibration, of which the most 
(i.e. [11], [13], [16]) neither have an available implemen-
tation nor report more than a few results on the real vide-
os (in some cases the videos themselves are unavailable); 
an exception is [19]. There also are several traffic surveil-
lance camera calibration methods (i.e. [7]) that require cars 
presence, while our methods needs pedestrian detections, 
so it's difficult to find a video that both [7] and our algo-
rithm can be tested on. 

Shalnov et al. [19] estimate extrinsic camera parame-
ters from human head detections obtained with [18], 
hence it's possible to test our and their methods on the 
same data. Fortunately the head detector also proves to be 
applicable for visualized event-based data. Therefore both 
methods are tested on RGB and event-based data. 

The results of evaluation are presented in Table 5. The 
proposed method outperforms [19] even though the latter 
gets camera focal length as additional input. The results 
of our method on event-based data are close to the results 
on RGB data. Our results are not exactly close to Tsai 
(ground truth) results, but they’re still applicable, for ex-
ample, for tasks that require imprecise ground plane esti-
mation to filter detections based on their size. The pic-
tures in section 5.3 show that the estimated ground plane 
is quite close to the real ground plane. 

   
Fig. 9. Visualization of the ground plane (shown as a grid; each square side is 0.5 m) computed with the predicted calibration 

parameters for videos with detections that violate the assumption of a single ground plane 

Tab. 5. Comparison of [19] and the proposed method on real data

 Method 

RGB data Event-based data 

Focal 
length 
(pix) 

Tilt  
(degrees) 

Roll 
(degrees) 

Height 
(cm) 

Focal 
length 
(pix) 

Tilt 
(degrees) 

Roll 
(degrees) 

Height 
(cm) 

Mean 
error 

[19] – 17.37 5.51 327.10 – 16.52 4.57 307.50 

Ours 354.5 4.02 1.04 131.2 330.1 4.87 1.48 151 

Median 
error 

[19] – 18.99 5.76 190.18 – 14.55 3.47 256.9 

Ours 128.8 3.7 0.58 43 163.4 5.03 1.17 44 
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6. Conclusion 

In this work we describe an algorithm that estimates 
camera location, view direction and focal length using 
only human pose detections. We also show that the algo-
rithm is applicable to Dynamic Vision Sensor parameters 
estimation. The future work can include several aspects: 

1) integration with specialized object detectors for 
event-based data;  

2) real data collection for performance evaluation on 
a larger dataset;  

3) improvement of parameter estimation quality. 
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