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Abstract 

The SUPPOSe enhanced deconvolution algorithm relies in assuming that the image source can 
be described by an incoherent superposition of virtual point sources of equal intensity and finding 
the number and position of such virtual sources. In this work we describe the recent advances in 
the implementation of the method to gain resolution and remove artifacts due to the presence of 
fluorescent molecules close enough to the image frame boundary. The method was modified re-
moving the invariant used before given by the product of the flux of the virtual sources times the 
number of virtual sources, and replacing it by a new invariant given by the total flux within the 
frame, thus allowing the location of virtual sources outside the frame but contributing to the signal 
inside the frame. 
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1. Introduction 

The challenge of obtaining high-resolution images 
beyond the limit imposed by diffraction (resolution be-
yond the Abbe limit), aberrations and noise with a single 
image was pursued for decades by deconvolution of the 
image with the instrument response function or point 
spread function (PSF). Recently in [1] the authors exam-
ine several standard deconvolution algorithms: Regular-
ized inverse filter, Tikhonov regularization, Landweber, 
Tikhonov–Miller, Richardson–Lucy, and fast iterative 
shrinkage-thresholding. These algorithms are evaluated 
for different 3D-images and implemented on an open-
source software. For all these deconvolution methods a 
marginal resolution improvement was obtained and in 
some cases the retrieval has shown different type of arti-
facts. The reason for the lack of significant resolution im-
provement and the presence of artifacts is that the decon-
volution problem, i.e finding the function R (x, y) that 
convolved with the PSF yields the measured image, is 
that due to the noise in the measurement the deconvolu-
tion is ill posed. This happens when we use the naive 
method of minimizing the l2 norm, which result in spuri-
ous oscillations or as in iterative Landweber method [2] 
which tends to produce an over-fitting on the noise when 
the number of iteration is not chosen appropriately (the 
number of iterations is a pseudo regularization parameter) 
or in Richardson–Lucy [3, 4] that typically produces ring-
ing artifacts (amplification of the noise). In fact, after de-
convolution, solutions are found with negative values for 
R even when we are dealing with an intensity signal that 

must be positive. Further, Tikhonov [5], regularized in-
verse filtering [6] and Tikhonov–Miller methods incorpo-
rate a regularization term to convert the problem into a 
well posed one. There are also fast iterative methods that 
incorporates a sparsity constrains in the wavelet domain 
and where the optimization problem is solved using new 
parameters (step side) and a soft-thresholding operator 
[7]. All these regularization terms always end up being a 
damping factor that smooths the recovered function R. 
Finally, the Richardson–Lucy method with total-variation 
regularization method [8] add a regularization term using 
the l 1 norm, instead of l 2 used in the regularized inverse 
filtering method, to preserve image discontinuities. This 
l 1 term might cause artifacts if the regularization parame-
ter is not chosen adequately producing a bad interpreta-
tion of the biological structure. These schemes have 
proven useful in 3D reconstruction where out of plane 
fluorescence can be removed but as mentioned, do not 
lead to a significant improvement in resolution.  

On the other hand, in the deconvolving compressed 
sensing methods [9, 10] the sparsity prior is a very re-
strictive constraint as shown in [11]. The authors show a 
good quality of the reconstruction only if there are less 
than three sources overlapping within the PSF. Further, in 
that case the authors recover R assuming that there is no 
background added in the image.  

In the work [12] the authors define a new enhanced 
deconvolution method from a single image that could be 
applied for fluorescent 2D microscopy images even when 
there is an unknown background. This background in-
cludes out of focus or surrounding media fluorescence, 
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dark counts (average), readout offset or any other additive 
contribution to the explored signal. The method called 
SUPPOSe (from superposition of virtual point sources) 
consists of introducing the ansatz that the objective func-
tion R (x, y) can be approximated by a sum of N virtual 
point sources, each one providing equal flux . The 
method has been tested on synthetic images showing a 
high increase in the resolution. In [13], the SUPPOSe 
method was applied to recover with high resolution cellu-
lar structures such as microtubules and F-actin filaments 
observed with a standard microscope with LED illumina-
tion. In these examples details down to 50 were retrieved. 
The ansatz introduced converts the inverse problem of 
finding the function R to a direct problem of finding the 
position of the sources, thus removing the negative val-
ued solutions for R and as proved in [12] converting the 
mathematical problem to a well posed one with a resolu-
tion that depends on the number of the virtual sources se-
lected, the quality of the PSF measurement, and mainly 
the signal to noise ratio. Although the resolution depends 
on how dense the structure is, the SUPPOSe method al-
lows solving denser structures than in [11]. In fact, the 
number of optimal virtual sources and the spatial resolu-
tion achieved can be estimated and depend on the density 
of the structure (see supplementary material, [12]), so we 
do not have to add a constrain to the minimization prob-
lem to impose the sparsity condition of the image as in 
the compress sensing method. Since the method better 
suited for filiform structures such as frequently found in 
biological problems, and less adequate for dense volume 
conglomerate of emitters [12] in [14] a modified version 
detecting the object edges was developed.  

One of the advantages of SUPPOSe is that we only 
have to find the positions of these virtual sources that re-
alize a minimum of a selected fitting function. Because a 
background would be a dense signal an image with back-
ground is not adequate for methods assuming sparsity of 
the solution. To solve this problem in [12] we needed to 
redefine the fitting function in the cases where there was 
an unknown background by subtracting the average value 
of the image and fitting with a PSF with null average. To 
find the minimum of this new fitting function we have 
chosen a parallelizable algorithm and we observed that 
one way to exploit this property was tiling the image. 
When applying SUPPOSe to some subfigures of synthe-
sized images we observe the presence of artifacts near the 
boundary. This artifact arises from the presence of fluo-
rescent molecules close enough to the boundary (form in-
side and from outside the tile). This was not taken into 
account in the original version of SUPPPOSe [12] where 
 N was assumed equal to the sum of the signal within 
the frame. To remove these artifacts in this paper we 
modified the optimization problem, changing the fitting 
function by a new one. As in [12] we first test our method 
for a synthetic image, and we show that we can remove 
the boundary artifact present on the previous method. 

Further we observe how the artifacts disappear when til-
ing the images.  

It is important to mention that a new field has been 
evolving in the last years known in the literature as super-
resolution or high resolution image reconstruction [15]. 
Some methods are based in scanning beams using re-
versible saturable optical fluorescence transitions 
(RESOLFT) microscopy either by stimulated emission 
depletion (STED) [16, 17] microscopy, ground state de-
pletion (GSD) microscopy [18, 19]. Another alternative 
using wide field imaging are structured light illumination 
(SIM) [20] that requires the acquisition of at least nine 
frames for an increase in resolution of a factor of 2 and 
that can be increased when saturation of the excited state 
is reached [21 – 24] at the expense of even more frames. 
Another approach using Fresnel incoherent correlation 
holography (FINCH) microscopy by generating self inter-
ference using a multifocal lens [25, 26] achieves a 2 to 3 
times improvement and requires at least 3 images per 
frame. It is worthwhile pointing out that all these methods 
could be used in conjunction with the SUPPOSe algo-
rithm to increase the resolution even further.  

At this point a distinction must be made with the su-
per-resolution methods for fluorescent microscopy based 
in the localization of single fluorescent molecules such as 
PALM [27, 28] or STORM [29, 30]. These types of 
methods are known as single-molecule localization mi-
croscopy (SMLM) and consist in the localization of real 
sources as opposed to virtual sources used in SUPPOSe. 
In those cases, it is basically required that the molecules 
do not overlap within the PSF of the microscope for a 
correct localization. Therefore these methods (based in 
high sensitivity camera detection) need hundreds or even 
thousands of frames to complete a single image. These 
methods are evolving fast and providing new insight in 
biological imaging [31 – 34] with great effort placed in 
developing adequate fluorophores [35]. Much progress 
has been made in recent years in evolving to 3D resolu-
tion by adding to the lateral localization characteristic of 
STORM methods a specific technique for axial resolu-
tion. A variety of schemes have been developed including 
introducing an axial dependence of the PSF [36, 37], us-
ing sophisticated interferometric techniques [38, 39], self 
interferometric technique [40], supercritical-angle fluo-
rescence [41] and more sophisticated near field schemes 
such as metal induced energy transfer [42]. To increase 
the speed methods resolving several simultaneously emit-
ting molecules within the PSF have been implemented. 
This has been achieved deconvolving each image using 
compressed sensing so the sparsity prior is a very restric-
tive constraint, and this has permitted a moderate increase 
in STORM reconstruction speed [43 – 46]. Other schemes 
have been approached with similar results [47, 48]. As 
mentioned before the SUPPOSe algorithm should not be 
seen as a localization reconstruction but as a deconvolu-
tion operation that will not provide an extraordinary reso-
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lution of the SMLM methods but has the advantage of 
working with a single image.  

The paper is organized as follows. In Section “SUP-
POSe method and modified SUPPOSe method” we de-
scribe the two methods, how the fit function was adapted 
and which steps in the algorithm need to be modified. In 
Section “Results” we apply the modified SUPPOSe 
method to synthesized images and to real images. First 
we reconstruct two synthesized images using tiles by the 
original SUPPOSe and by the modified SUPPOSe meth-
od. In both synthetic images we observe that the modified 
SUPPOSe method removes the artifacts that appear in the 
intersection of the tiles when applying the original meth-
od. These artifacts are removed maintaining the same 
resolution that we had obtained when applying SUPPOSe 
to images supported inside the image frame. Then we use 
our method to remove artifacts for real images obtained 
from a standard fluorescence microscope. To test the per-
formance of both methods on real images we acquired an 
image of mitochondrial networks using an objective with 
low numerical aperture (NA) and compared both recon-
struction with the same sample captured with an objective 
with larger numerical aperture. We split the low NA im-
age into two tiles, and we apply both methods to show 
that also here the modified SUPPOSe method removes 
the artifacts present in the old version. As well, we find 
that the resolution is at least that of the high NA objec-
tive. Finally we show that with the modified method we 
can remove artifacts of tiled F-actin wide-field images 
taken with high NA objectives. In this case we could dis-
tinguish structures that are distorted when applying the 
standard SUPPOSe method.  

2. SUPPOSe method and modified SUPPOSe method 

To explain changes introduced in the fitting function 
we are going to start with a brief description of the SUP-
POSe method. All image measurements (in dimension D) 
are blurred and distorted by the Point Spread Function 
(PSF). We will denote the target function by R (x), the 
measured data S (x) and the PSF by I, with x  R D. The 
relation between the target function and the measured da-
ta are given by a convolution with the PSF plus the back-
ground and the noise i.e:  

( ) ( ) ( ) ( )S x R I x x B x       (1) 

The signal R*I and the background B are the average 
value of the associated stochastic variable, and the fluctu-
ations around such averages obtained in each measure-
ment is the noise . Hence the average value for the noise 
defined in this manner is null. For the case of fluorescent 
microscopy the background includes out of focus or sur-
rounding media fluorescence, dark counts (average), 
readout offset or any other additive contribution to the 
explored signal. The function I is obtained after pixela-
tion of the original PSF. Also S is only sampled for cer-
tain values 1{ }n

i ix  , which are the pixels, being each xi a 

vector in RD where n is the number of pixels with side 
distance between neighbor pixels equal to dp.  

The SUPPOSe method consists in approximating the 
target function R, by a superposition of virtual point 
sources of identical fluxes  so that the only unknown are 
the positions of the sources. That is, the approximate so-
lution ( )R x  hasthe form,  

1

( ) ( )
N

k
k

R x x a


       (2) 

Here for each k = 1,, N, D
k Ra   are the positions of 

the virtual sources, where N is the number of virtual point 
sources used for the fit. Observe that these positions can 
be repeated.  

The quality of the reconstruction depends on the number 
of virtual sources N used. The accuracy in the positions of 
the virtual sources was defined in [12] by . For the precise 
definition of  see [12]. The authors also defined Nop as the 
number of virtual sources N that minimizes and the corre-
sponding optimal  was denoted by op.  

2.1. Case with no background – SUPPOSe 

In the SUPPOSe method when there was no back-
ground the recorded signal S could be reconstructed ap-
proximately by  

1

( ) ( ) ( )
N

k
k

S x R I x I x a


           (3) 

Here I  was some approximation of the PSF function 
I (see Section 2 of the supplementary material in [12]). 
Given N and , we search for the position of the virtual 
point sources 1{ }N

k ka  , that yield a minimum of the fitting 
function,  

2 2 2

1

( ( ) ( ))
n

i i
i

S S S x S x


         (4) 

where |||| is the standard 2-norm. Remember that D was 
the dimension of the space and N the number of virtual 
point sources used for the fit. In this case  we were using 
that I was normalized and that the positions of the virtual 
point sources ka  were far from the boundary. We had in 
that case that,  

1 1 1 1

( ) ( ) ( )
n n N n

i i i k
i i k i

S x S x I x Na
   

           (5) 

We now give a summary of the steps of the algorithm, 
for more details see [12].  

Algorithm 1. To process an image,  
1. Start with some arbitrary N and use (5).  
2. Then use a Genetic Algorithm to minimize 2 in 

(4).  
3. Make an histogram of the solution. Compute Nop 

and  is scaled accordingly. Return to step (2).  
4. Convolve the obtained virtual point sources with 

the known shape of the source used for the deter-
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mination of the PSF using op as its width. This 
step is optional.  

The third step it is necessary when it is not easy to 
calculate the optimal N.  

2.2. Case with background – SUPPOSe 

In the case where there was an unknown background 

level in (1) we defined 
1

(1/ ) ( )
n

dev ii
S S n S x


   , 

1
(1/ ) ( )

n
idev i

I n I xI 
     and  

1

( ) ( ) ( )
N

kdev dev
k

S x R x x aI I


           (6) 

Finally we searched for the positions D
k Ra    of the 

N virtual sources that minimized:  

2 2

1

( ( ) ( ))
n

dev dev i i
i

S S S x S x


         (7) 

Observe that in (5) and in (6) we were using that the 
virtual sources ka  were far from the boundary. The prob-
lem is that when the image is not supported far from the 
boundary this fitting function can create artifacts. To 
solve this artifacts arising from the virtual sources near 
the boundary we correct the fitting (7) changing S  by  

1 1 1

1

( ) ( ) ( )

( ( ) )

N n N

ik k
k i k

N

kk
k

S x I x I xa a
n

I x ma

  




    

    

 



  

 
 (8) 

where  

1

1
( )

n

k i k
i

m I x a
n 

     (9) 

That is, if we make a translation of the PSF to ka , 
then mk is the mean of the translated PSF over all the pix-
els of the image (tile). In general we have 0  mk

  1 / n 
and this number depends on each virtual source. When 
the source is inside the frame and far from the boundary 
mk

 = 1 / n, this amount decreases as the source approaches 
the boundary and mk

  0 when the source is far outside. 
Now the function 2 is redefined changing in (7) S  by 
S . That is, the problem now is to find the N virtual 
sources D

k Ra    such that minimizes:  

2

1

( ( ) ( ))
n

dev dev i i
i

S S S x S x


      (10) 

Here we are using that all the random variables (xi) 
are independent and have the same distribution. Then the 

mean over all the pixels it is equal to 1
1

( ) 0
n

in i
x


  . 

Also we are using that the background is constant.  
As in SUPPOSe’s method with B  0, we do not have 

a priori which is the total flux of the image (without 
background). We also have here the additional problem 

that we may have many virtual sources near the bounda-
ry. So we cannot use the relation of equation (5) in the first 
step of Algorithm 1. To replace that step, we develop a new 
sub algorithm to search for a relation between N and .  

Sub Algorithm 1. We start with an initial 0 and 
T = Sdev. At each step i,  

i. Calculate maxT and bk the point where it attains 
the maximum and ( )kk < I x b >m     

ii. Redefine: 0
1

( ) ( ) ( ( ) )
i

k k
k

T x T x I x b m


     . 

iii. t (k) = || T ||. 
iv. The algorithm stops when t arrives to a minimum, 

and select N= Total iterations.  

At the end 0 1 1
( )

n N
i ki k

I x b
 

    approximates 

1
( )

n
ii

S x
 . The method now follows as in Algorithm 1 

with an additional change. At the end of step 2. we add 
the following sub step:  

2b. Once we have found 1{ }N
k ka   we use a linear 

Least Squares fit to find a corrected value for .  

Again, 
1 1

( )
n N

i k
i k

I x a
 

    is an invariant that approx-

imates 
1

( )
n

i
i

S x

 .  

With these new fitting function we can allow to im-
plement SUPPOSe on images that are supported near the 
boundary or to make tiles without creating artifacts.  

3. Results  

In this section we will compare the results obtained 
after processing synthetic images with information near 
the boundary using SUPPOSe method and modified 
SUPPOSe method.  

We also make a comparison of both methods when 
tiling real images acquired with objectives of different 
numerical apertures.  

3.1. Reconstruction of synthetic images –  
SUPPOSe vs modified SUPPOSe  

To test the method we start with the image synthe-
sized in [12] consisting in two parallel straight segments 
144 apart convolved with a Gaussian PSF, with noise and 
background added. The parameters used to synthesizethe 
image were selected to simulate the experimental condi-
tions of a wide-field fluorescence microscope. The pixel 
size is 68 and the PSF half width (standard deviation) is 
97.6. This is similar to the resolution obtained with emit-
tedlight at a wavelength of 520 and a microscope objec-
tive of numerical aperture 1.3. In fig. 1b, the SUPPOSe 
reconstruction for N = 400 is presented. But, if we cut this 
image in two sub-images where on each image we use 
N = 200 we obtain the results of fig. 1c. We can see that 
the artifactson the boundary here are catastrophic. Instead 
when we apply the modified SUPPOSe method we obtain 
the results of fig. 1d.  
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Many biological structure form a periodical arrange-
ment. For example, fluorescence nanoscopy (STORM) 
recently revealed that actin, spectrin and accompanying 
proteins in axons form a membrane-associated periodic 
skeleton (MPS) arranged as periodic actin rings separated 
by  180 nm – 190 nm, [49, 50]. Nevertheless, as de-
scribed in [50] this structure is not always present in all 
axons. This type of structures will cross the frame bound-
ary and would present artifacts with the previous version 
for SUPPOSe. This motivated us to test our method with 
a synthetic family with a periodic structure. The purpose 
with this test is to prove that we can remove the boundary 
artifact and recover the period using the modified SUP-
POSe. We built a family of synthetic images with 500 nm 
diameter axonal segments. Synthetic axons with presence 
of MPS structure are made up of point sources arranged 
in k parallel lines separated by a distance p, each line 
contains 50 point sources. This ground truth structure was 

convolved with a PSF Gaussian function to generate the 
synthetic image. The PSF Gaussian function model ex-
perimental conditions of a wide-field fluorescence micro-
scope, the width of the PSF (standard deviation) is 95 nm 
and the pixel size is 34 nm (see Fig. 2a) and then was 
cropped to obtain an image with information close 
enough to the boundary (see Fig. 2b). 

In this case the synthetic image was generated with 
k = 10 and p = 210 nm (see Fig. 2a) and then was cropped 
to obtain an image with information close enough to the 
boundary (see Figure Fig. 2b). In this example the real 
sources close to the boundary contribute with significant 
signal inside the frame. Observe that the total flux recorded 
by the image within the fitted frame is built by virtual 
sources well inside the frame, virtual sources inside the 
frame but close to the boundary (part of their flux falls out-
side the frame) and virtual sources outside the frame close 
to the boundary (part of their flux falls inside the frame). 

(a)   (b)   (c)   (d)  
Fig. 1. (a) Graphic of the source R (the two parallel straight segments, each generated by 71 sources spaced 9:6 nm) and the 

synthesized image S obtained after convolving R with the PSF, adding the noise and the background. (b) After SUPPOSe. (c) After 
applying SUPPOSe to each tile of (a). (d) After applying the modified SUPPOSe to each tile of (a). Solutions convolved with a 50 nm 

circle. (Scale bar 200 nm) 

(a)   (b)   (c)   (d)  
Fig. 2. Synthetic image of axonal segment with periodical structure MPS and SUPPOSe solutions. (a) The synthetic image of an 
axonal segment with periodic MPS structure. Generated from 10 parallel straight segments (each composed of 50 point sources) 

separated by 210 nm convolved with the PSF function, adding the noise and the background. The dots over the image correspond to 
the ground truth structure. (b) Region of interest corresponding to the dashed white box in (a). (c) After applying SUPPOSe to the 

image in (b). We can see some artifacts near the boundary (dashed white box). (d) After applying the modified SUPPOSe to the 
image in (b). Scale bars 200 nm. Solutions convolved with a gaussian function of sigma 34 nm 

After processing this part of the synthetic image with 
SUPPOSe we achieved the result shown in the Fig. 2c 
and observed some artifacts near the boundary of the im-
age. If we apply the modified SUPPOSe to the same im-
age, we obtain the result shown in the Fig. 2d.We show in 
this case that we can remove the boundary artifact present 
on the previous method and that we can recover the peri-
odicity. 

As we mentioned before, since the algorithm is paral-
lelizable, for some large images it is useful to divide it in-
to many tiles. Therefore, we want to test the accuracy of 
the modified SUPPOSe method when we increase the 

number of tiles. To this end, we again divide the synthetic 
image Fig. 2b into three tiles and apply the method of 
(10) . The results obtained using N  300 for each tile are 
shown in the Fig. 3. To evaluate the accuracy of the 
method, the positions of the virtual sources were project-
ed in the direction of the synthetic lines on an axis di-
rected along the axon long axis. Then we compute a his-
togram of this data set to see how they are grouped 
around the position of the ground truth lines. Finally we 
fit the histogram as a sum of Gaussian functions to show 
a multi-lobe distribution with averages for each lobe de-
parting less than 1:7 nm from the ground truth, and 



Solving the boundary artifact for the enhanced deconvolution algorithm SUPPOSe applied to fluorescence microscopy Toscani M., Martínez S. 

Компьютерная оптика, 2021, том 45, №3   DOI: 10.18287/2412-6179-CO-825 423 

standard deviations of 24 nm. We observe here how the 
artifacts disappear when tiling this periodic synthesized 
structure and that we also recover the periodicity. 

Microscopy Images – SUPPOSe vs modified SUPPOSe 

To test the performance of both methods on real im-
ages, we split a wide-field image of mitochondrial net-
works into two tiles and processed it with SUPPOSe and 
modified SUPPOSe. The image was acquired using a 10× 
objective with a low numerical aperture of 0.3 (Fig. 4a) 
giving a PSF half width (measured as standard deviation) 
of 420 nm of the objective for 599 nm light. The same re-
gion of the sample was captured using a 40× objective 
with a larger numerical aperture of 0.95 (Fig. 4b), in this 
case the PSF half width is 133 nm at the same wave-
length. In this way, we obtained a ground truth structure 
to compare it with the SUPPOSe solutions. The solution 
obtained after processing the 10× images with the SUP-
POSe is shown in Fig. 4c. The boundary artifact distorts 
the real structure, it can be clearly seen that in the area 
where both tiles meet, there is a break in the continuity of 
the mitochondrial network. Instead, when we process the 
same images with modified SUPPOSE these boundary 
artifacts disappear (Fig. 4d). Observe that the solution 

was convolved with a gaussian function of 133 nm stand-
ard deviation for its correct visualization, since it is the 
PSF width of the 40× objective. In this way we observe 
that we can resolve some structures such as the ring in the 
upper left area that cannot be resolved with the previous 
method, see Fig. 5. With this representation, we can con-
clude that the modified SUPPOSe has a resolution at least 
the same as the one of the objective of larger aperture. It 
is important to mention that the structures on the lower 
area of the frame are recovered with lower resolution 
since the signal to noise ratio is smaller in that zone. 

(a)   (b)  
Fig. 3. Synthetic image of axonal segment with periodical 

structure MPS and modified SUPPOSe. (a) Synthetic image 
with MPS structure of period p = 210 nm divided in three tiles. 
(b) After applying the modified SUPPOSe to each tile. Solution 
convolved with a gaussian function of sigma 34 nm. Scale bars 

200 nm 

(a)   (b)   (c)   (d)  
Fig. 4. Mitochondria present in a bovine pulmonary artery endothelial cell. Images of the same cell region were acquired with two 
objectives of different numerical aperture and therefore different resolution. (a) Region of interest acquired with a 10× microscope 

objective and numerical aperture of 0.3. (b) Same region of interest acquired with a 40x microscope objective and numerical 
aperture of 0.95. (c) Result of applying SUPPOSe to the imagen in Fig. 4a. Dashed middle box: the boundary artifacts distort the 

real structure of the mitochondrial network (a fictitious parallel structure is formed in the boundary of the tiles). Dashed top box: the 
hole of the structure is not completely resolved. (d) Result of applying modified SUPPOSe to the imagen in Fig. 4a. Dashed middle 
box: the boundary artifacts disappear on the same region. Dashed top box: the reconstruction shows a resolve ring of mean radius 

550 nm that match with the same ring dimension in Fig. 4b. Scale bars 800 nm. Solutions convolved with a gaussian function of 
sigma 133 nm 

To show similar improvements in images taken with 
high NA objective we processed images of F-actin pre-
sent in the endothelial cells of the bovine pulmonary ar-
tery (BPAEC) using NA = 1:3. Fig. 6 shows the results 
obtained from processing a specific region of the sample. 
We split the original image into two tiles and processed 
them separately with the two SUPPOSe methods. The re-
sults obtained are shown in the Figs. 6b and 6c. Artifacts 
generated by the original SUPPOSe method at the bound-
aries of the tiles distort information present in the whole 
region, as can be seen in the regions middle and left box-
es in the Figs. 6b and 6c. Observe for example, that in 

Fig. 6b the region corresponding to the dash middle box 
may be confused with a structure of two straight seg-
ments. With the modified SUPPOSe the presence of a 
different type of structure in that region can be appreciat-
ed. Instead in the right box a structure that appears to be 
an boundary artifact is found that with the modified 
method it can be ascertained that it is the actual structure. 

Conclusions  

In this work we introduced a new fitting function for 
the method SUPPOSe presented in [12] to remove arti-
facts arising from the boundary. This correction allows 
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parallelizing the process by tiling the image to improve 
the processing speed maintaining a good resolution in the 
intersection of the subfigures. 

We first validated our method using synthetic images 
showing that in these cases the method solves the prob-
lem of the boundary artifacts. These artifacts are removed 
maintaining the same resolution that we had obtained 
when applying SUPPOSe to images supported inside the 
image frame. Finally we tested our method for real imag-

es obtained from a standard fluorescence microscope. We 
could distinguish structures that were distorted by the 
previous method in F-actin filaments. We also remove ar-
tifacts and reconstruct structures of mitochondrial net-
works obtained by a low numerical aperture 10× objec-
tive. In this case we use the images obtained by a higher 
numerical aperture 40× objective as ground truth to com-
pare showing thatthe method at least equaled the resolu-
tion of the high NA objective.  

(a)   (b)  

(c)   (d)  

(e)   (f)  
Fig. 5. The ring structure present in the mitochondrial network. (a), (c), (e) A close-up view of the ring structure on 40× objective 
image, the SUPPOSe solution and modified SUPPOSe solution respectively. (b), (d), (f) Intensity profiles along the line marked in 

the respective images. In (b) and (f) we can distinguish the presence of two lobes. The distance between the maximum of the lobes is 
around  1100 nm in both cases. In (d) instead there is only one lobe. The resolution in (e) is at least that of the high NA objective 

(a)   (b)   (c)  
Fig. 6. F-actin present in a bovine pulmonary artery endothelial cell and SUPPOSe solutions. (a) The original image was divided 
into two tiles, each region was processed separately. (b) After applying SUPPOSe. Regions corresponding to the dashed left and 

middle boxes respectively: the structures consist on lines parallel to the boundaries. (c) After applying the modified SUPPOSe. New 
type of structures appear on the same mentioned regions. Right box: a structure that appears to be boundary artifact was the actual 

structure. Scale bars 200 nm. Solutions convolved with a Gaussian function of sigma 50 nm 



Solving the boundary artifact for the enhanced deconvolution algorithm SUPPOSe applied to fluorescence microscopy Toscani M., Martínez S. 

Компьютерная оптика, 2021, том 45, №3   DOI: 10.18287/2412-6179-CO-825 425 

References 

[1] Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, 
Guiet R, Vonesch C, Unser M. Deconvolutionlab2: An 
open-source software for deconvolution microscopy. 
Methods 2017; 115: 28-41. 

[2] Landweber L. An iteration formula for fredholm integral 
equations of the first kind. Am J Math 1951; 73(3): 615-624. 

[3] Richardson WH. Bayesian-based iterative method of im-
age restoration. J Opt Soc Am 1972; 62(1): 55-59. 

[4] Lucy LB. An iterative technique for the rectification of ob-
served distributions. Astron J 1974; 79: 745. 

[5] Tikhonov AN. On the solution of ill-posed problems and 
the method of regularization [In Russian]. Doklady Akad-
emii Nauk SSSR 1963; 151(3): 501-504. 

[6] Wiener, N. Extrapolation, interpolation, and smoothing of 
stationary time series: with engineering applications. MIT 
Press; 1964. 

[7] Beck A, Teboulle M. A fast iterative shrinkagethreshold-
ing algorithm for linear inverse problems. SIAM J Imaging 
Sci 2009; 2(1): 183-202. 

[8] Dey N, Blanc-Feraud L, Zimmer C, Roux P, Kam Z, Oli-
vo-Marin J-C, Zerubia J. Richardson–Lucy algorithm with 
total variation regularization for 3D confocal microscope 
deconvolution. Microsc Res Tech 2006; 69(4): 260-266. 

[9] Donoho DL. Superresolution via sparsity constraints. SI-
AM J Math Anal 1992; 23(5): 1309-1331. 

[10] Candès E, Romberg JJ, Tao T. Robust uncertainty princi-
ples: Exact signal reconstruction from highly incomplete 
frequency information. IEEE Trans Inf Theory 2006; 
52(2): 489-509. 

[11] Morgenshtern VI, Candes EJ. Superresolution of positive 
sources: The discrete setup. SIAM J Imaging Sci 2016; 
9(1): 412-444. 

[12] Martínez S, Toscani M, Martínez OE. Superresolution method 
for a single wide-field image deconvolution by superposition 
of point sources. J Microsc 2019; 275(1): 51-65. 

[13] Toscani M, Martínez S, Martínez OE. Single image de-
convolution with super-resolution using the suppose algo-
rithm. Proc SPIE 2019; 10884; 1088415. 

[14] Vazquez GDB, Martínez S, Martínez OE. Super-resolved 
edge detection in optical microscopy images by superposi-
tion of virtual point sources. Opt Express 2020; 28(17): 
25319-25334. 

[15] Park SC, Park MK, Kang MG. Super-resolution image re-
construction: a technical overview. IEEE Signal Process 
Mag 2003; 20(3): 21-36. 

[16] Hell SW, Wichmann J. Breaking the diffraction resolution 
limit by stimulated emission: stimulated-emission-depletion 
fluorescence microscopy. Opt Lett 1994; 19(11): 780-782. 

[17] Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Fluores-
cence microscopy with diffraction resolution barrier bro-
ken by stimulated emission. Proc Natl Acad Sci U S A 
2000; 97(15): 8206-8210. 

[18] Hell SW, Kroug M. Ground-state-depletion fluorscence 
microscopy: A concept for breaking the diffraction resolu-
tion limit. Appl Phys B 1995; 60(5): 495-497. 

[19] Rittweger E, Wildanger D, Hell SW. Far-field fluorescence 
nanoscopy of diamond color centers by ground state deple-
tion. EPL (Europhys Lett) 2009; 86(1): 14001. 

[20] Gustafsson MG. Surpassing the lateral resolution limit by a 
factor of two using structured illumination microscopy. J 
Microsc 2000; 198(2): 82-87. 

[21] Heintzmann R, Jovin TM, Cremer C. Saturated patterned 
excitation microscopy–a concept for optical resolution im-
provement. J Opt Soc Am A 2002; 19(8): 1599-1609. 

[22] Gustafsson MG. Nonlinear structured illumination micros-
copy: wide-field fluorescence imaging with theoretically 
unlimited resolution,” Proc Natl Acad Sci U S A 2005; 
102(37): 13081-13086. 

[23] Schwentker MA, Bock H, Hofmann M, Jakobs S, Bewers-
dorf J, Eggeling C, Hell SW. Widefield subdiffraction 
resolft microscopy using fluorescent protein photoswitch-
ing. Microsc Res Tech 2007; 70(3): 269-280. 

[24] Heintzmann R, Gustafsson MG. Subdiffraction resolution 
in continuous samples. Nat Photon 2009; 3(7): 362-364. 

[25] Rosen J, Siegel N, Brooker G. Theoretical and experi-
mental demonstration of resolution beyond the rayleigh 
limit by finch fluorescence microscopic imaging. Opt Ex-
press 2011; 19(27): 26249-26268. 

[26] Siegel N, Lupashin V, Storrie B, Brooker G. High-
magnification super-resolution finch microscopy using bi-
refringent crystal lens interferometers. Nat Photon 2016; 
10(12): 802-808. 

[27] Betzig E, Patterson GH, Sougrat R, Lindwasser OW, 
Olenych S, Bonifacino JS, Davidson MW, Lippincott-
Schwartz J, Hess HF. Imaging intracellular fluorescent 
proteins at nanometer resolution. Science 2006; 313(5793): 
1642-1645. 

[28] Hess ST, Girirajan TP, Mason MD. Ultrahigh resolution 
imaging by fluorescence photoactivation localization mi-
croscopy. Biophys J 2006; 91(11): 4258-4272. 

[29] Rust MJ, Bates M, Zhuang X. Subdiffraction-limit imaging 
by stochastic optical reconstruction microscopy (STORM). 
Nat Methods 2006; 3(10): 793-796. 

[30] Heilemann M, Van De Linde S, Schüttpelz M, Kasper R, 
Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M. Sub-
diffraction-resolution fluorescence imaging with conven-
tional fluorescent probes. Angew Chem Int Ed 2008; 
47(33): 6172-6176. 

[31] Bates M, Jones SA, Zhuang X. Stochastic optical recon-
struction microscopy (STORM): a method for superresolu-
tion fluorescence imaging. Cold Spring Harb Protoc 2013; 
2013(6): 498-520. 

[32] Sauer M, Heilemann M. Single-molecule localization micros-
copy in eukaryotes. Chem Rev 2017; 117(11): 7478-7509. 

[33] Stone MB, Shelby SA, Veatch SL. Superresolution mi-
croscopy: shedding light on the cellular plasma membrane. 
Chem Rev 2017; 117(11): 7457-7477. 

[34] Tam J, Merino D. Stochastic optical reconstruction mi-
croscopy (STORM) in comparison with stimulated emis-
sion depletion (STED) and other imaging methods. J Neu-
rochem 2015; 135(4): 643-658. 

[35] Samanta S, Gong W, Li W, Sharma A, Shim I, Zhang W, 
Das P, Pan W, Liu L, Yang Z, Qua J, Kima JS. Organic 
fluorescent probes for stochastic optical reconstruction mi-
croscopy (STORM): Recent highlights and future possi-
bilities. Coord Chem Rev 2019; 380: 17-34. 

[36] Huang B, Wang W, Bates M, Zhuang X. Three-dimensional 
super-resolution imaging by stochastic optical reconstruction 
microscopy. Science 2008; 319(5864): 810-813. 

[37] Backlund MP, Lew MD, Backer AS, Sahl SJ, Grover G, 
Agrawal A, Piestun R, Moerner W. Simultaneous, accurate 
measurement of the 3D position and orientation of single 
molecules. Proc Natl Acad Sci U S A 2012; 109(47): 
19087-19092. 

[38] Shtengel G, Galbraith JA, Galbraith CG, Lippincott-
Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman 
CM, Kanchanawong P, Davidson MW, Fetter RD, Hess 
HF. Interferometric fluorescent super-resolution microsco-
py resolves 3D cellular ultrastructure. Proc Natl Acad Sci 
U S A 2009; 106(9): 3125-3130. 



http://www.computeroptics.ru journal@computeroptics.ru 

426 Computer Optics, 2021, Vol. 45(3)   DOI: 10.18287/2412-6179-CO-825 

[39] Aquino D, Schönle A, Geisler C, Middendorff CV, Wurm 
CA, Okamura Y, Lang T, Hell SW, Egner A. Two-color 
nanoscopy of threedimensional volumes by 4Pi detection 
of stochastically switched fluorophores. Nat Methods 
2011; 8(4): 353-359. 

[40] Bourg N, Mayet C, Dupuis G, Barroca T, Bon P, Lécart S, 
Fort E, Lévêque-Fort S. Direct optical nanoscopy with axi-
ally localized detection. Nat Photon 2015; 9(9): 587-593. 

[41] Bon P, Linares-Loyez J, Feyeux M, Alessandri K, Lounis 
B, Nassoy P, Cognet L. Selfinterference 3D super-
resolution microscopy for deep tissue investigations. Nat 
Methods 2018; 15(6): 449-454. 

[42] Ghosh A, Sharma A, Chizhik AI, Isbaner S, Ruhlandt D, 
Tsukanov R, Gregor I, Karedla N, Enderlein J. Graphene-
based metal-induced energy transfer for sub-nanometre op-
tical localization. Nat Photon 2019; 13(12): 860-865. 

[43] Zhu L, Zhang W, Elnatan D, Huang B. Faster storm using 
compressed sensing. Nat Methods 2012; 9(7): 721-723. 

[44] Min J, Vonesch C, Kirshner H, Carlini L, Olivier N, Hold-
en S, Manley S, Ye JC, Unser M. Falcon: fast and unbiased 
reconstruction of high-density super-resolution microscopy 
data. Sci Rep 2014; 4(1): 1-9. 

[45] Hugelier S, De Rooi JJ, Bernex R, Duwé S, Devos O, Sli-
wa M, Dedecker P, Eilers PH, Ruckebusch C. Sparse de-
convolution of highdensity super-resolution images. Sci 
Rep 2016; 6: 21413. 

[46] Hugelier S, Eilers P, Devos O, Ruckebusch C. Improved su-
perresolution microscopy imaging by sparse deconvolution 
with an interframe penalty. J Chemom 2017; 31(4): e2847. 

[47] Huang F, Schwartz SL, Byars JM, Lidke KA. Simultaneous 
multiple-emitter fitting for single molecule super-resolution 
imaging. Biomed Opt Express 2011; 2(5): 1377-1393. 

[48] Nelson A, Hess S. Molecular imaging with neural training 
of identification algorithm (neural network localization 
identification). Microsc Res Tech 2018; 81(9): 966-972. 

[49] Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated 
proteins form a periodic cytoskeletal structure in axons. 
Science 2013; 339(6118): 452-456. 

[50] Barabas FM, Masullo LA, Bordenave MD, Giusti SA, Un-
sain N, Refojo D, Cáceres A, Stefani FD. Automated quan-
tification of protein periodic nanostructures in fluorescence 
nanoscopy images: abundance and regularity of neuronal 
spectrin membrane-associated skeleton. Sci Rep 2017; 
7(1): 1-10. 

 

 

Authors’ information 

Micaela Toscani (b. 1988) received the Electronic Engineer degree from the University of Buenos Aires, Argentina 
in 2016. She is currently a Ph.D. student working on the deconvolution method SUPPOSe and its application to fluores-
cence microscopy images, a breakthrough highlighted in OPN 2020. She is a Teaching Assistant at the Physics depart-
ment at the School of Engineering of the University of Buenos Aires. E-mail: mtoscani@fi.uba.ar . 

 
Sandra Martinez (b. 1978), studied mathematics at the University of Buenos Aires where she gained her PhD de-

gree in 2007 in the area of Free boundary problems. She is Professor in the Mathematics department where she devel-
oped the deconvolution method SUPPOSe, a breakthrough highlighted in OPN 2020. Research interests are numerical 
methods for enhanced microscopy resolution and numerical analysis. E-mail: smartin@dm.uba.ar . 
 

 

Received October 27, 2020. The final version – February 16, 2021. 
 

 

 
 


