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Abstract 

We propose a new on-chip optical neural network (OONN) based on multimode interfer-
ence-microring resonators (MMI-RRs). The suggested structure eliminates the need for wave-
length division multiplexers (WDM) to create an optical neuron on a single chip. New microring 
resonator structure based on 4×4 MMI coupler with a size of 24µm × 2900 µm is used for the 
basic elements of the computation matrix, as a result a higher bandwidth and free spectral range 
(FSR) can be achieved. The Si3N4 platform along with the graphene sheet is designed to modu-
late the signals and weights of the neural networks at a very high speed. The Si3N4 can provide 
wide range of operating wavelengths and can work directly with the wavelengths of color imag-
es. The structure's benefits include rapid computing speed, little loss, and the ability to handle 
both positive and negative values. The OONN has been applied to the MNIST dataset with a 
speed faster than 2.8 to 14x times compared with the conventional GPU methods. 
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Introduction 

In recent years, to deal with the growing demand for 
faster computation, computing processors such as central 
processing units (CPUs), graphics processing units 
(GPUs) and tensor processing units (TPUs) have been ex-
tensively developed [1]. However, Moore’s law in elec-
tronics is approaching the limit and slowing down the 
speed of data-processing-related improvements. Light has 
been recently established as a communication medium for 
telecommunications and data centers, but it has not been 
widely utilized in information processing, computing and 
optical neural networks [2, 3]. The neural networks im-
plemented in the optical domain can provide particular 
advantages such as high-throughput, power-efficient, and 
low-latency computing performance [4]. 

In the literature, there are some optical methods for 
the dot product or matrix vector multiplication implemen-
tation and optical neural networks, such as microring res-
onators (MRRs), microdisk resonators (MDRs), Bragg 
gratings or Mach–Zehnder interferometers (MZIs) [5, 6]. 
Additionally, the two modulation methods for signals and 
weights – one based on the thermo-optic effect and the 
other on the plasma dispersion effect – were primarily 
used in the proposed work. In these structures, microring 
resonators are basic elements for weight banks [7]. The 
main disadvantage of this structure is difficult for the on-
chip connection and the requirement of using an optical 
directional coupler [8]. Therefore, this structure is very 
sensitive to the fabrication and requires a complex control 

architecture to achieve extract the desired transmissions. 
In order to achieve the desired factor of the kernel, it re-
quires complex control systems [9]. Therefore, in this 
study, we propose microring resonators based on a 4×4 
MMI coupler for implementing modulators and weight 
banks without using directional couplers. The new mi-
croring resonator based on 4×4 MMI coupler can provide 
a high free spectral range (FSR) compared with others in 
the literature due to its special architecture. As a result, 
the proposed structure can work with a higher bandwidth 
and the matrix dimension of the kernel used in neural 
network based on this basic element can be increased. In 
addition, by using the new microring resonator based on 
4×4 MMI for optical neuron weight banks, the extract 
coupling ratios which control the precisely working prin-
ciple of the device can be obtained. Our proposed struc-
ture also does not need to require the WDM as required 
by the previous research [10]. 

With the development of silicon photonics, the silicon 
photonic-based architecture has been shown to perform 
multiply-accumulate operations at frequencies up to five 
times faster than conventional electronics [11]. The method 
employs a bank of tunable silicon MRRs that recreate on-
chip synaptic weights. However, the graphene material is a 
particular attraction to create high-speed optical devices. 
The state-of-the-art tuning speed of graphene microring is 
at 130 GHz due to the refractive index of the graphene lay-
er sheet changed by applied voltage into the graphene sheet 
[12]. On the other hand, the electronic processors have 
their clock rate limit at around 4 – 5 GHz as they reach the 
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thermal dissipation limit. Therefore, there is a motivation 
to explore how photonics could be used to perform con-
volutions and matrix multiplication. The optical imple-
mentation of convolutional neural networks with fast op-
eration speed and high energy efficiency is appealing ow-
ing to its outstanding capability of feature extraction and 
high-speed data processing. Convolutional neural net-
works, in particular, spend over 80 % of their processing 
time on MVM-based convolutional processing, which is a 
computationally costly operation in electronics. As a re-
sult, hardware and MVM operations can be matched to 
accelerate convolutional neural networks [13]. 

In this study, the optical neuron performing matrix-
vector multiplication with a new compact structure with-
out using WDM is proposed. Our structures use the gra-
phene, so it can provide a higher speed up to 2.8 to 14× 
times compared with GPUs convolution. The resonance 
wavelength can be achieved accurately. The material 
Si3N4 platform is used; it is suitable for the existing 
CMOS technology, and has little loss. In addition, the 
proposed structure uses special 4×4 MMI based mi-
croring resonators for weight banks, so it can provide a 
large fabrication tolerance of ± 2 µm in the length. Such 
high fabrication tolerance can help the building of a fully-
connected network based on the proposed OMMM for 
the novel optical implementation of convolutional neural 
networks in the future. The proposed OONN is applied to 
perform highly efficient CNNs for image classification 
and recognition. Our OONN is put to the test using the 
MNIST hand-writing dataset. The neural network is 
trained using two layers, and after that, the factors are 
added to the OONN. For the implementation of the nega-
tive values, we specifically use the add-drop filters based 
on MMI resonators [14]. As a result, the neural networks 
can be extended in the future. 

Theory of all-optical neural networks based on MMI 
microring resonator structures 

Figure 1 shows the proposed OONN with optical neu-
ron based on MMI resonators without the WDMs. The 
convolutional neural network (CNN) consists of some el-
ements, such as convolutional, nonlinear, pooling and ful-
ly connected layers. The kernel of the proposed structure 
of Fig. 1 with 4 weight factors, for example, can be ex-
pressed by 

1 1 11 2 12 3 13 4 14 ,y x w x w x w x w     (1) 

where xi (i = 1, 2, 3, 4) is the element of the window in the 
input image and w1i (i = 1, 2, 3, 4) is an element of the ker-
nel filter. The filter scans the input image two-
dimensionally and product-sums are computed at every 
spatial position. As illustrated in Fig. 1, our proposed ar-
chitecture comprises four sets of cascaded MMI mi-
croring resonators (MRRs) and a 1×4 multimode interfer-
ence (MMI) coupler with an only single-mode light 
source. Input signals xi and filter factors w1i are the sig-
nals that are applied to the first and second MRRs, re-

spectively, after being converted to the driving voltage 
signals. Each of the two MRMs modulates the continuous 
wave (CW) light from the light source and an optical out-
put from the cascaded MRMs corresponding to a product 
of xi and w1i. 

 
Fig. 1. New Architecture based on 4×4 MMI microring 

resonators for the dot product implementation 

The proposed OONN is trained by changing the val-
ues of the kernels, analogous to how feed-forward neural 
networks are trained by changing the weighted connec-
tions. The estimated kernel and weight values are re-
quired in the testing stage. The input signal is encoded 
using the first column array of the MMI-based microring 
resonators and the weight factors or the kernel filter needs 
no modification because of the unchangeable kernel. Us-
ing only this structure, any filter can be created by chang-
ing the weight factor through the control of the resonance 
wavelength as presented in the next section. 

A new optical microring resonator based on only one 
multimode waveguide with four ports is shown in Fig. 2. 
We use Si3N4 waveguide with a width of 1600 nm and 
height of 180 nm for input and output waveguides. For a 
multimode waveguide, we use a wider width of 
WMMI

 = 24 m. In this structure, we use feedback wave-
guides for ring waveguides and form the add-drop mi-
croring resonator. The drop and through ports Tp and Td 
are shown in Fig. 2. In a multimode waveguide, the in-
formation of the image position in the x direction and 
phases of the output images is very important. To design 
output waveguides that can capture the optical output, we 
must understand where multi-images occur. Furthermore, 
for devices like MMI switches, the phase information of 
the spot images or output images is crucial. It can be 
shown that the field in the multimode region will be of 
the form [15]: 
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of N self-images at that output of the multimode wave-
guide respectively, p denotes the output image number 
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and b describes a multiple of the imaging length. For the 
short device, we choose b = 1. 

 
Fig. 2. Microring resonator based on only one multimode 

waveguide structure 

Consider a 4×4 multimode waveguide with the length 
of L = LMMI

 = (3L) / 2, where L =  /(0
 – 1) is the beat 

length of the MMI, 0, 1 are the propagation constants of 
the fundamental and first order modes supported by the 
multimode waveguide with a width of WMMI. The phases 
associated with the images from input i to output j can be 
presented by 
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 (3) 

We showed that the characteristics of an MMI device 
can be described by a transfer matrix [16]. This transfer 
matrix is a very helpful tool for analysing cascaded MMI 
structures. The phase ij associated with imaging an input 
i to an output j in an MMI coupler. These phases ij form 
a matrix S4×4, with i representing the row number, and j 
representing the column number. A single 4×4 MMI cou-
pler at a length of LMMI

 = (3L) / 2. 
The light propagation through the resonator is charac-

terized by a round trip transmission Ein,3
 = exp ( j) Ein,4, 

where 

2
eff Rn L 


 

is the round trip phase,  is the loss factor, neff is the ef-
fective refractive index of the SOI single mode wave-
guide and LR is the ring resonator circumference. We 
connect the through and drop ports into the balanced pho-
todiode. The normalized transmitted powers at the can be 
calculated by 

12

0.25 ,
1 cos( ) (0.5 )d outT I 
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 (4) 
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 (5) 

The add-drop microring structure is widely applied in 
on-chip optical computing owing to the capability of dif-
ference processing. Since the power value is non-
negative, early work only utilized the through port, then 
the transmission matrix and the output vector are non-
negative, thus the matrix operation is limited in the non-
negative number domain. However, fundamental mathe-

matical operations such as matrix–vector multiplication 
and matrix–matrix multiplication are usually performed 
in the real number domain in practice. In order to extend 
the matrix operation to the full real number domain, the 
final results need to be obtained via the differential pro-
cessing between the power values of the drop port and the 
through port; in this way, the transmission matrix and fi-
nal output vector are both able to contain the negative 
domain. The output intensities at the two ports of the out-
put in the balanced detections can be expressed by 

2
1 sin ( ) ,

2out inI I   (6) 

2
2 cos ( ) ,

2out inI I   (7) 

where  is the loss factor. As a result the intensity after the 
balanced photo-detector is I = Iout2

 – Iout1
 = Iin

 |cos |,  is 
the phase difference in the two arms. Therefore, both nega-
tive and positive values can be achieved using this proposed 
method. The output signals at the drop port can be expressed 
by: 
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The output signal at the through ports can be ex-
pressed by 
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Simulation results and discussions 

In order to obtain the desired factor xi and wij, we use 
the graphene sheet integrated with Si3N4 waveguide. 
Graphene can be incorporated into Si3N4 core waveguide 
to implement graphene silicon nitride waveguide (GSW). 
The length of the graphene waveguide is Larm. The cross-
section view of the graphene silicon waeguide is shown 
in Fig. 3a.  

The GSW has a monolayer graphene sheet of 340 nm 
on top of a Si3N4 waveguide, separated from it by a thin 
Al2O3 layer. Graphene, Al2O3 and silicon together 
formed a capacitor structure, which was the basic block 
of the graphene modulator and phase shifter [17]. The 
presence of the graphene layer changes the propagation 
characteristics of the guided modes and these can be con-
trolled and reconfigured by changing the chemical poten-
tial by means of applying a suitable voltage Vg. The real 
parts of the refractive index of graphene with different 
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chemical potentials are shown in Fig. 4. Owing to its 
band structure, which offers both intra-band and inter-
band transitions, graphene exhibits optical properties. 
Hence, the material conductivity expressed by both types 
of transitions [18]: 

int int( ) ( ) ( ).ra er        (10) 

Where int ra
 ()and int er

 () are the intraband and in-
terband conductivities, which can be calculated by the 
Kubo’s theory: 
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Where e is the electron charge, ħ is the angular Planck 
constant, kB is the Boltzman constant, T is the tempera-
ture, c is the Fermi level or Chemical potential; 

2( ) ( )F ceV    is the electron collision rate,  is elec-
tron mobility, VF is the Fermi velocity in graphene. The 
dielectric constant of a graphene layer can be calculated 
by [19, 20]: 

0

( )( ) 1 .g
i    
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 (13) 

The refractive index of the graphene layer sheet can 
be changed by providing applied voltage Vg to the gra-

phene sheet. It is because it will change the value of the 
chemical potential: 

0( ) ( ) .c g F gV V V V      (14) 

Where V0 is the offset voltage from zero caused by 
natural doping. Fig. 4b and 4c present the effective index 
of the Si3N4 waveguide for real and imaginary parts de-
pending on the chemical potential. 

a)  

b)  
Fig. 3. (a) Waveguide graphene structure, (b) mode profile 

a)  b)  c)  
Fig. 4. Effective refractive index of the GSW waveguide 

The normalized powers at the through and drop ports 
of the MMI-based resonator are shown in Fig. 5a. The 
difference power between the two ports is in the range of 
(–1, +1) for negative values of the kernel filters. In this 
simulation, the chemical potential at the graphene is 
0.6eV. By controlling the chemical potential, we can con-
trol the transmission. As a result, the desired values of the 
kernel factor and input image can be obtained. Fig. 5b 
presents the normalized transmissions at through, drop 
and difference for the chemical potential of 0.6eV and 
0.65eV. Simulation results show that modulation speed 
up to 28 GHz. Fig. 5c shows the transmission difference 
for different chemical potentials. We can see that positive 
and negative numbers can be created at one wavelength 
by controlling the chemical potential. 

Fig. 6 presents the results of the numerical simulation 
for signal propagation through the MMI-based microring 
resonator with input signal at port 1. Fig. 6a and 6b de-
pict the signal propagation for resonances that are on and 
off, respectively. In this work, by controlling the length 
of the feedback waveguide LR, we can achieve the fun-
damental resonance shift. We may then achieve the de-
sired resonance shift by controlling the chemical potential 
via the applied voltage on the graphene sheet. The reso-
nance wavelength is obtained at the resonance condition 
mr

 = neff LR, where m is integer numbers. 
The normalized powers at output ports 1 and 2 when 

input signal is at port 1 and port 2 is shown in Fig.7a. The 
simulations show that the length variation of ± 2 µm is 
still keep the output powers unchanged. This means that 
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the fabrication tolerance of the proposed structure is high. 
The current CMOS fabrication technology for VLSI in-
dustry is feasible. 

a)  

b)  

c)  
Fig. 5. (a) Normalized transmissions at through and drop ports, 

(b) the transmissions with two chemical potentials and (c) 
transmissions can be controlled by the change of chemical 

potential 

a)  

b)  
Fig. 6. (a) Signal propagation via the MMI based microring 

resonator with on resonance and (b) off-resonance 

Next, we investigate the phase error of the 4×4 MMI 
based microring resonator. The phases at output ports 1 
and 4 when input signal is at port 1 are shown in Fig. 7b. 
The phase shift difference between port 1 and 4 is also 
presented in this simulation. The results show that the 
phase difference of 90 degree can be obtained over a 
length variation of 18 µm. This result provide a flexible 
design for the neuron element. 

a)  

b)  
Fig. 7. (a) Fabrication tolerance analysis for variation of the 
4×4 MMI length and (b) the phases at output ports 1 and 4 

when input signal is at port 1 

Some other performance parameters of the microring 
resonator are Finesse, Q-factor, resonance width, and 
bandwidth. These are all terms that are mainly related to 
the full width at half of the maximum (FWHM) of the 
transmission. The quality factor Q of the microring reso-
nator of the structure in Fig. 1 can be derived as [21]: 

.
1

g RN L
Q

 
 

 (15) 

Another important parameter for microring resonators 
is the finesse F, which is defined and calculated for the 
single and ad-drop microring resonators by: 

.
1FWHM

FSRF   
 

 (16) 

Where FWHM is the resonance full-width-at-half-
maximum and FSR is the free spectral range. The Free 
Spectral Range (FSR) is the distance between two peaks 
on a wavelength scale. By differentiating the equation 
 = LR, we get FSR = 2 / ngLR, where the group index 
ng = neff – (dneff / d). The signal after the first neuron of 
the OONN in Figure 1 is modulated by a microring reso-
nator modulator. For the first time, in this study, we use a 
4×4 MMI resonator as shown in Fig. 8a for the optical 
modulator. We use FDTD (Finite Difference Time Dif-
ference) method to simulate the proposed microring reso-



On chip optical neural networks based on MMI microring resonators for image classification Bui T.T., Le D.T., Nguyen T.H.L., Le T.T. 

Компьютерная оптика, 2023, том 47, №4   DOI: 10.18287/2412-6179-CO-1211 593 

nator based on the multimode waveguide. In our FDTD 
simulations, we take in to account the wavelength disper-
sion of the silicon waveguide. A light pulse of 15 fs pulse 
width is launched from the input to investigate the trans-
mission characteristics of the device. The grid sizes 
 x = y =  z = 20 nm are chosen in our simulations for 
accurate simulations [22]. The FDTD simulations for the 
proposed microring resonator with chemical potentials of 
0.45 eV and 0.42eV are shown in Fig. 8b and 8c. The 
simulations show that the device operation has a good 
agreement with our prediction by analytical theory. 

a)  

b)  

c)  
Fig. 8. (a) An MMI based resonator for optical modulator, (b) 

and (c) optical field propagation through the optical modulator 
based on an MMI resonator at different chemical potentials 

The normalized transmissions of the propose mi-
croring resonator in Fig. 8 at microring radii of 5 m and 
50 m are shown in Fig. 9. Here we assume that the 
chemical potential is c

 = 0.45eV, the simulations show 
that the exact characteristics of a single microring resona-
tor can be achieved. The very high FSR of the microring 
based on an MMI coupler can be obtained. This means 
that optical modulator with high bandwidth can be 
achieved. This is suitable for high speed and big data ana-
lytics using all-optical computing in the future. The FSRs 
can be calculated to be FSR = 100 nm for R = 5 µm and 
FSR = 10 nm for R = 50 µm, respectively. 

 
Fig. 9. Transmissions of the microring resonator with two 

microring radii of 5 m and 50 m  

Fig. 10 illustrates the signal propagation through the 
whole structure at different chemical potentials for 0.6eV 
and 0.65eV. Input signals x1, x2, x3, x4 are changed by 
controlling the potential chemicals at the MMI resonator 
for implantation of x1, x2, x3, x4, respectively in Fig. 1. 

a)  

b)  
Fig. 10.  Signal propagation via the whole device (a) chemical 

potential 0.6eV and (b) 0.65eV 

In this work, we applied our proposed OONN to per-
form image recognition on the MNIST dataset. The opti-
mized parameters to solve MNIST can be categorized in 
two groups [23], i.e., two 5 × 5 × 8 different kernels and 
two fully connected layers of dimensions 800 × 1 and 
10 × 1 as presented in Fig. 11. We use the kernel filter 
5 × 5 for simulations  

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

w w w w w
w w w w w

W w w w w w
w w w w w
w w w w w

 . 

 
Fig. 11. OONN with two layers used for MNIST dataset 

recognition 

In this simulation, we use the OONN with two layers 
and the ReLU nonlinear activation function is used. The 
results of the MNIST task solved by our OONN is shown 
in Fig. 12a. Fig. 12a shows the simulated results of the 
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overall accuracy of 92.4 % after 10 interactions. We also 
compare the results with the conventional CNN consist-
ing of two layers with an accuracy of 99.2 % after 50 in-
teractions. Fig. 12b shows the loss. The simulation results 
show that the proposed structure can converge faster than 
the conventional CNN. Although the accuracy of the pro-
posed OONN is lower than the standard CNN, the pro-
posed structure is faster than 5 times and requires lower 
power consumption. This is suitable for higher connec-
tions with multiple layers in other complex applications. 
In addition, the standard CNN is a 32-bit floating point 
while the proposed structure uses only 6 bits of precision. 
The accuracy can be improved much more if we use the 
higher bit precision [24]. 

By cascading microring resonators based on 4×4 
MMI to implement the neuron as shown in Fig. 1, for 
example with 100 microring resonators having the 
same radius of 5μm, the time propagating through the 
neuron is: 

,
(2 )N Rt p c
  (17) 

where c is the speed of light, R is the radius of the ring 
waveguide, N is the number of microring resonators. 
When N = 100 [9], the propagation time is tp

 = 11ps and 
an throughput of 1/tp

 = 100 (GS/s). The microring resona-
tor covered with the graphene sheet can be modulated at 
speeds of 130 GS/s [25], meaning that the modulation 
frequency of the MRRs does not bottleneck the through-
put of the neuron. 

Next, we compare the performance of the proposed 
structure with DeepBench. DeepBench is a data set 
that contains how long various types of GPUs took to 
perform a convolution for a given set of convolutional 
parameters. The power usage of two of convolutional 
benchmarks for the GPUs from the DeepBench dataset 
are: AMD MI25 with 300W, Nvidia GTX 1080Ti with 
250W [26, 27]. By using the proposed structure, the 
convonutional unit can produce a pixel of an image in 
100 ps to perform a convolution with K filters using 
two pixels per circle. The speed of the convolution can 
be estimated by: 

50 ( 1)( 1).runtimet ps K H R W R       (18) 

Where R is the edge length of the kernel with zero 
padding, H and W are the height and width of the input 
image. The power consumption of the proposed convolu-
tion can be estimated at about 110W compared with mean 
GPUs power consumption of 295W. In addition, the 
speed of the proposed convolution is between 2.8 and 
14× faster than mean GPU runtime. 

Conclusion 
In this paper, novel optical neural networks without 

the use of WDM and a new optical neuron that imple-
ments an optical vector-matrix multiplication (OVMM) 

circuit employing multimode interference (MMI) struc-
tures are proposed. The microring resonator based on an 
MMI coupler is used for the optical modulator, add-drop 
weight banks for kernels and input signal encoding. The 
proposed structure has the benefits of not requiring WDM 
elements, having excellent manufacturing accuracy, being 
compact, and having low loss for higher layers CNN. We 
also showed how the OONN may be used to recognize 
handwriting in the MNIST dataset. The OONN is esti-
mated to perform convolutions 2.8 to 14x times faster 
than a GPU while roughly using lower power consump-
tion. Additionally, the suggested structure can handle 
both positive and negative numbers as well as more com-
plicated jobs for upcoming applications that use the sug-
gested OONN. 

a)  

b)  

c)  
Fig. 12. (a) Accuracy, (b) loss and confusion matrix for MNIST 
recognition using standard CNN and the proposed OONN and 

(c) fusion matrix of the predicted numbers 
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