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Abstract 

Advanced microscopy technologies such as electron microscopy have opened up a new field of 
vision for biomedical researchers. The use of artificial intelligence methods for processing EM 
data is largely difficult due to the small amount of annotated data at the training stage. Therefore, 
we add synthetic images to an annotated real EM dataset or use a fully synthetic training dataset. 
In this work, we present an algorithm for the synthesis of 6 types of organelles. Based on the EPFL 
dataset, a training set of 1161 real fragments 256×256 (ORG) and 2000 synthetic ones (SYN), as 
well as their combination (MIX), were generated. The experiment of training models for 6, 5-
classes and binary segmentation showed that, despite the imperfections of synthetics, training on a 
mixed (MIX) dataset gave a significant increase (about 0.1) in the Dice metric for 6 and 5 and 
same results at binary. The synthetic data strategy gives annotations for free, but shifts the effort to 
producing sufficiently realistic images. 
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Introduction 

Microscopy plays an indispensable role in biomedical 
research. Advanced technologies of microscopy like 
electron microscopy have opened up new eyesight for 
biomedical researchers. The image resolution is very 
high, which is why a cubic millimeter of brain tissue can 
take up more than 1000 terabytes. The resulting images 
are analyzed to identify individual cells. Segmentation is 
usually done by biologists manually. Processing one 
experiment takes up to six months of manual work. 

One of the first papers which use the serial block 
scanning electron microscopy as a source of high-
resolution three-dimensional nanohistology for cells and 
tissues was the [1] (2010). A subsequent series of works 
was aimed at creating datasets for training deep learning 
networks and DNN methods and models for EM data 
segmentation designed for binary segmentation of brain 
cell organelles – neural membranes [2] and supervoxel 
segmentation of mitochondria [3]. Simultaneously, the 
problem of 3D reconstruction of the brain neural network 
and the problem of brain connectomics on the basis of 
neuron organelles and connections between neurons 
(synapses) is stated [4]. In this problem, of particular 
importance is the segmentation of such organelles as 
postsynaptic densities (PSD), vesicles, and axons. 

The invention of U-Net in 2015 [5] opened a series of 
novel models and adaptations for segmenting brain EM 
data. The source of U-Net success is in involving the 
contextual information of the input image at all levels of 
processing. Almost immediately, the publication [6] 

experimentally confirmed that the skip connection of the 
U-Net architecture is effective for solving segmentation 
problems in biomedicine. 

U-Net also provided a basis for creating numerous 
models: [7, 8], 3D U-Net [9] (2016), V-Net [10] (2016), 
DeepMedic [11] (2017), HighRes3DNet [12] (2017), 
Inception Unet [13] (2020), R2U++ [14] (2022). 

The application of artificial intelligence methods for 
EM data processing is largely hampered by a small 
amount of labeled data for training and testing DNNs. 
Open EM data as a whole are represented by only a few 
labeled datasets, both due to the laboriousness of 
preparing samples for an electron microscope, and due to 
the lack of specialists for manual labeling. We found four 
open EM datasets the earliest and most popular of which 
are labeled only for one class (mitochondria or 
membranes). In the two other datasets, several classes are 
distinguished. As a result, the majority of neural networks 
used in EM processing are trained only to perform binary 
segmentation. 

In our previous article [15], we presented the first 
results of creating of an algorithm that synthesizes EM-
data and markup. We used synthetic data to supplement 
the original dataset with a synthetic axon. It should be 
noted that attempts to synthesize electron microscopy 
data of highly porous structures well described in an 
article published in 2022 [16]. Examples of synthetic 
scanning electron microscopy image data from Fend et al. 
shown in Fig. 1. 

In connection with the above, the main aim of this 
work is to (1) to improve algorithms for automatic 
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generation of a dataset of synthetic objects; (2) to develop 
a parameterization for an algorithm that synthesizes data; 
(3) to study the capabilities of multiclass segmentation of 

U-Net-like architectures, starting with U-Net (in this 
work), using EM-dataset, synthetic dataset and mixed 
dataset. 

 
Fig. 1. Examples of synthetic scanning electron microscopy image data from Fend et al [16] 

1. Data and methods 

In this section, we describe publicly available datasets. 
The most popular datasets for assessing the segmentation of 
mitochondria were collected by Lucchi et al. in [3]. 

It is seen that in three of the four labeled open 
datasets, only one class is labeled. Only one dataset 
contains more than one labeled class. For this reason, the 
vast majority of neural networks in EM are trained to 
classify only two classes (object and background). 

Tab. 1. Open labeled electron microscopy datasets 

№ Name Amount of data Amount of labeled data Labeled classes Resolution nm/voxel 
1 AC4, ISBI 2013 [17] 4096×4096×1850 1024×1024×40 membranes 6×6×30 

2 EPFL [18], Lucchi [3] 1065×2048×1536 2 datasets 1024×768×165 mitochondria 5×5×5 

3 Kasthuri et al [19] 1463×1613×85 1334×1553×75 mitochondria 3×3×30 
4 UroCell [20, 21] 1366×1180×1056 5 datasets 256×256×256 mitochondria, endolysosomes,

fusiform vesicles 
16×16×15 

 

We used the dataset EPFL or the data set of 
mitochondria segmentation Lucchi available at 
https://www.epfl.ch/labs/cvlab/data/data-em/. Initially, 
these data contain masks only for mitochondria. For this 
reason, to assess multiclass segmentation algorithms, we 
manually labeled 27 layers in the training sample 
(1024×768) and 5 test layers for the following classes: (1) 
mitochondria, including their boundaries; (2) boundaries of 
mitochondria; (3) cell membranes; (4) postsynaptic 
densities (PSD); (5) axon sheaths; and (6) vesicles. 
Accurate manual labeling of one layer takes 5 – 8 hours. 
Our labeling of the dataset EPFL is available at 
https://github.com/GraphLabEMproj/unet. We plan to 
continue the work on labeling and do this for both 
volumes. It just so happens that the axon sheath in the 

training dataset is present only in the first 36 layers and 
looks completely different from the axon sheath in the test 
dataset Fig. 2. In the test dataset, the axon is represented in 
the first 70 layers, changes its shape from elongated to 
more rounded, and also has a darker interior and inner ring. 

For the synthesized dataset, we generated 2000 
images of size 256×256 pixels containing the least 
represented classes–postsynaptic densities and axon 
sheaths. An example of one labeled sample is shown in 
Fig. 3, an example of several samples is shown in Fig. 4. 
The shape, size, and gray levels of compartments are 
chosen to be similar to the shape, size, and gray levels of 
the test EPFL dataset. The advantage of a synthetic set is 
that you can get any number of images you need along 
with their labeling automatically. 

a)  b)  c)  d)  

Fig. 2. Axon sheaths in the training and test EPFL datasets: (a) axon sheath in the training set; (b) axon sheath in the test set, first 
layer; (c) axon sheath in the test set, 35th layer; (d) axon sheath in the test set, 70th layer 
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The studies presented in this article are the development 
of our work , in this study, we expand the topic of synthetic 
image generation by modifying some organelles generation 

and adding the ability to parameterize synthetic image 
generation algorithms to achieve high similarity with 
different real datasets using a single universal code. 

a)  b)  c)  d)  
Fig. 3. Example of synthesized data (only nonzero masks are shown): (a) layer, (b) mask of axon sheaths, (c) mask of vesicles, 

(d) PSD mask 

a)  b)  c)  d)  
Fig. 4. Example of synthesized data 

1.1. Algorithm of synthetic data generation 

You can view and download the implementation of our 
algorithms for synthesizing by scanning electron microscopy 
here: https://github.com/GraphLabEMproj/Synthetics/. 
Next, we provide a brief description of the synthesis 
algorithms. The generation of synthetic images is the 
following sequence: 1) generation of the organelles 
(axon, mitochondria, PSD, vesicles); 2) placing 
organelles to the image; 3) generation of the membranes; 
4) image blurring and noising. 

Organelle location. The position of an organelle is 
determined by its central point. All other organelle points 
(like shell) are calculated relative to the center point. A 
random position of the center point is chosen in the range 
of [32: image_size – 32] pixels from the edge for the PSD 
and [5: image_size – 5] pixels for the rest of the 
organelles. The organelle is rotated at a random angle 
around its center. After generating and rotating the points, 
we check for intersections with organelles already 
existing in the layer, and if there is an intersection, then 
the procedure for setting the location and rotation of the 
organelle is repeated. If in several iterations (we use 300 
iterations) it is not possible to add a new organelle to the 
layer without intersecting with the existing ones, then it is 
skipped from the generation. 

Number of organelles The number of organelles of 
one or another class is set by parameters. Empirically, we 
decided to add one axon, 3 mitochondria, 3 PSDs, and 3 
vesicle regions in a single 256×256 patch. Organelles are 
added randomly one after the other. However, if it is 

physically impossible to arrange a given number of 
organelles without intersections, then new organelles will 
not be added. Since for training networks it is important 
that the images with the class for which training takes 
place are in sufficient volume. Therefore, for high-quality 
training, it is necessary that both the number of images 
and the area of the required class on the layer be 
sufficient for training (for example, if the class is too 
small in area, then the optimizer can consider it noise and 
ignore it, and if there are few examples with the class, 
then there is a chance that the grid will have time to 
forget this class). Therefore, we do not focus on the 
statistics of the initial data, but, on the contrary, add more 
organelles to the synthetic set, either poorly represented 
in the initial data (axon) or occupying a small area (PSD). 

Axons. We generate two types of axons: filled inside 
and empty (only shell). After that, from 7 to 14 shell 
points are created around the center of the organelle. The 
distance from the center to the point is set randomly in 
some given range (from 15 to 82 pixels for the shell and 
from 40 to 139 pixels for the axon with internal filling). 
To draw the shell, a closed spline is used along the points 
of the shell. To drawing the thickening of the shell, we 
take a subset of successive shell points and use an open 
spline with a wider line thickness. In the case of 
generating an axon with an internal part, the internal part 
is filled via darkened and blurred background texture. 
The inner shell is drawn as an ellipse. 

Mitochondria are generated in the form of an 
elongated smoothed, slightly asymmetrical figure with a 
shell of varying thickness. We use from 4 to 10 shell 
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points created around the center line of the mitochondrion 
for drawing the spline. To generate an oblique cut of the 
mitochondrion, an open spline is used, consisting of 
points located near the most distant parts of the 
mitochondrion. For the interior of the mitochondrion, a 
texture is generated, consisting of non-intersecting line 
segments of different lengths. 

Vesicles. The generation of vesicles begins with the 
selection of the area in which the vesicles will be located. 
After that, a certain number of single vesicles are added 
to this area - circles of a certain radius, which for the 
most part are added without intersections. 

PSD is generated as a curve segment, and additional 
areas in front of and behind the curve mimic the 
darkening from the PSD. 

Masks. All masks of all organelles (axons, 
mitochondria, vesicles, PSD, membranes) are drawn by 
changing the color for the drawing algorithm to white. 
We use organelle’s masks to place its to the images 
without intersection. We make several attempts to add a 
mask to image to an empty space. 

Membranes. We use organelle’s masks as starting 
points of the region growth algorithm. Regional 
boundaries become our membranes. We also add lines 
from PSD to membranes to connect them. On some tiles 
we make double thin borders instead of single thick 
borders to be more like the original dataset. 

Blur and Noise. We use Gauss filtering and Poisson 
noise to simulate image blurring and noise from the 
registration device. All images were blurred with a 
Gaussian filter with a kernel of radius 7 pixels. According 
the Vulović et al. [22] the appearance of Poisson noise is 
due to the statistical nature of electromagnetic waves 
such as x-rays, visible light and gamma rays. X-ray 
sources emit a certain number of photons per unit time. 
Such sources have random fluctuations in the number of 
emitted photons. As a result, the resulting image has 
spatial and temporal randomness corresponding to the 
Poisson distribution 
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We add Poisson noise with  = 1. It makes the 
generated images more similar to real-life images. 

1.2. Personification of generation algorithm  
for a specific real dataset 

Despite the fact that different datasets are obtained 
from similar biological materials, their stored digital 
images can vary greatly depending on the equipment 
used, the scale selected, the quality of the matrix, etc. As 
a result, datasets of different developers have different 
statistical characteristics. In order for synthetic datasets to 
better match real ones, generation algorithms must be 
parameterized to be able to generate data for a specific 
type of dataset. In Fig. 6 presented examples images from 

datasets EPFL (a) and AC4 dataset (b). It can be seen 
from their images that the images differ greatly in the 
average brightness of organelles, the thickness of the 
lines, and in the blurring of the contours. 

In order to make it possible to adjust the systematic 
set to real data, the characteristics of the generated 
objects were parameterized. The parameterization 
touched the average brightness of all objects and the 
deviation from the average brightness, thickness and 
color of the borders. 

To select the parameters, we used the histograms of 
the classes marked on the zero (layer0000) layer of EPFL 
dataset. We compared the histograms of the synthetic 
dataset with the histograms of the entire labeled dataset 
(Fig. 5). 

Of course, by exactly repeating the distribution as in a 
histogram, one cannot guarantee the similarity of 
synthetic data to the original ones, and more, one cannot 
guarantee a good AI model on them. But this is a fairly 
simple method for checking the correctness of the 
algorithm. 

As can be seen from the histogram of axons, we did 
not focus on the histogram of the training dataset and 
testing dataset, but rather proceeded from the generalized 
representation of the axon in the electron microscopy 
data, because axon is the least represented class with the 
least variability. Nevertheless, this approach gave good 
results when training an AI model. 

Thanks to parameterization, the generator can 
generate images similar to EPFL (Fig. 6c) and AC4 
dataset (Fig. 6d), adjusting to a specific dataset. 

1.3. Network architecture 

U-Net is considered to be a standard convolutional 
network architecture for image segmentation tasks. This 
architecture consists of a contracting path for capturing 
the global context and a symmetric expanding path that 
enables accurate localization. The basis of this network is 
the project U-Net https://github.com/zhixuhao/unet. In 
the original project, U-Net was used for the binary 
classification of membranes. In this work, we use U-Net 
for multiclass segmentation. We copied the original 
repository and made modifications in it, which are 
available at https://github.com/GraphLabEMproj/unet 
together with our labeling of the Lucci data. Following 
the author of the code at 
https://github.com/zhixuhao/unet, the implementation of 
U-Net has some differences from the classical U-Net 
network [5]: 

 The network input is an image of size 
256×256×1. 
 The network output is 256×256×N, where N is 
the number of classes. 
 The sigmoid activation function guarantees that 
the mask is in the range [0, 1]. 
In addition, we added batch normalization after each 

ReLU activation layers. 
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a)  

b)  

c)  

d)  

e)  

f)  

g)  

Fig. 5. Class histograms for zero layer of EPFL dataset (original 0), for all labeled layers of EPFL dataset (originall all) and for 
synthetic dataset: (a) mitochondria; (b) axon; (c) PSD; (d) vesicles; (e) mitochondrial boundaries; (f) membranes; (g) ground 

a)  b)  c)  d)  
Fig. 6. Parameterization of the generator for various datasets: (a) original EPFL; (b) synthetic EPFL;  (c) original AC4 dataset; 

d) synthetic AC4 dataset 
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In the process of improving the model, we constructed 
more compact modifications of the U-Net model, as a 
result of which we present tiny-unet-v2 model, which has 
the following differences from the previous architecture: 

Number of channels in original U-Net convolutional 
blocks: 64  128  256  512  1024, number of 
channels in our architecture: 32  32  64  128  256. 

The resulting model contains 15.7 times fewer 
parameters than the original model and takes up 15.5 
times less memory (24 MB instead of 364 MB). 

2. Experimental results 
2.1. Assessment criteria 

We use the Dice–Sørensen coefficient (DSC), 
which are usually used for segmenting biomedical 
images. The values of the DSC vary from zero to one. 
Define the number of correctly classified pixels as 
belonging to the target class (true positive) TP, the 
number of correctly classified background pixels (true 
negative) TN, the number of erroneously classified 
pixels as belonging to the target class (false positive) 
FP, and the number of erroneously classified 
background pixels (false negative) FN. Then, define 
the metrics as follows: 

2
.

2

TP
DSC

TP FP FN


 
 

Since we consider multiclass segmentation in this 
work, we are interested in multiclass metrics. Since the 
Dice metrics compare two sets, in the case of multiclass 
classification the result will be a vector of Dice metrics 
for each class. For training a neural network, a scalar 
error function is used. Therefore, for multiclass 
segmentation, we should convolve the metrics vector. To 
convolve a vector into a scalar, we use the linear 
convolution 

1 1
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where i is a weighting coefficient and Wi is the value 
of the DSC for the i-th class. Wscalar is a scalar value 
or convolution of a metrics vector, and N is the 
number of classes. In this work, we use the linear 
convolution of DSC with the weighting coefficients 
i equal to 1 / N. 

2.2. Experiments 

We manually labeled 27 EPFL slices (1024×768) for 
the training purposes and 5 slices (1024×768) for testing 
purposes from the EPFL dataset. 

ORG is a training dataset included only EPFL data. 
Twenty seven high-resolution images of the original 
training sample were cut into 256×256, 512×512 and 
768×768 fragments, with an overlap of a half of the 
fragment size. In total, ORG initial training part includes 
1161 fragments. 

SYN is a training dataset included only synthetic data. 
To obtain a synthetic (SYN) training dataset, we 
generated 2000 synthesized fragments of size 256×256. 

MIX is a mixed training dataset. It includes 1161 
fragments of EPFL data and 2000 synthesized fragments; 
thus, we have 3161 fragments in total. 

To additionally increase the training datasets, we 
made random rotations of images, random shifts, and 
random scale changes in a small range (5%). We selected 
20 % of images from the training sample into a validation 
sample. The batch size equal to seven. 

All three models were tested on five layers (175 
fragments 256×256 with an overlap of a half of the 
fragment size). We used the Adam’s optimizer with 
dynamic learning rate from 1×10 – 4 to 1×10 – 6. The 
change in the learning rate starts from the 100th epoch 
and then decreases every 25 epochs by 5 times. 

Experiment 1. Five segmentation classes – 
mitochondria with their boundary, membranes, PSD, 
axon sheaths, and vesicles. The number of epochs is 200. 

Experiment 2. Six segmentation classes – 
mitochondria with their boundary, boundaries of 
mitochondria, membranes, PSD, axon, and vesicles. The 
number of epochs is 200. One more class of mitochondria 
boundaries is added. 

Experiment 3. One segmentation class – mitochondria 
with their boundary. The number of epochs is 200. 

It is seen from Tab. 2 that the quality of multiclass 
segmentation is only slightly better or slightly lower than 
binary segmentation in various experiments. The class 
mitochondria boundaries is a subclass of the class 
mitochondria with their boundaries, and the additional 
edge enhancement improves the segmentation results of 
the unifying class. The network was trained on 
unbalanced classes, since the sizes of compartments and 
their occurrence differ dozens of times. 

In commercial applications based on deep learning, in 
addition to quality metrics, the performance 
characteristics of algorithms also play a large role. Based 
on the values of the quality metric Dice given in Tab. 2 
and 3, we see that with a tenfold decrease in the number 
of model weights (and hence the execution time), the 
results of the quality of work remain comparable. 

3. Discussion 

We test our models on the full EPFL test volume and 
full Lucci++ test volume and use these values instead of 
the results of the Tab. 2. We cannot directly compare the 
results from the Tab. 4 because our models were trained on 
a significantly reduced version of the EPFL dataset (27 
layers instead of 165) and we use our own markup. 

The Lucchi++ dataset is based on the EPFL 
Hippocampus dataset, as published in Structured Image 
Segmentation using Kernelized Features by Lucchi et al 
[3]. The experts re-annotated the two EPFL Hippocampus 
stacks. The goal was to achieve consistency for all 
mitochondria membrane annotations and to correct any 
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misclassifications in the ground truth labelings. The 
markup was manually corrected by one senior biologist 
and additionally validated by two neuroscientists. In 

cases of disagreement the biologist corrected the 
annotations until consensus was reached. The dataset can 
be loaded there https://casser.io/connectomics/. 

Tab. 2. Dice coefficient of electron microscopy data segmentation for U-Net model for the original dataset (ORG), 
 the dataset enriched with synthesized images (MIX) and full synthesized dataset (SYN) 

Class Number of classes 
binary 5 6 

ORG MIX SYN ORG MIX SYN ORG MIX SYN 
Mitochondria with the boundaries  0.930 0.930 0.888 0.934 0.946 0.893 0.936 0.938 0.873 
Boundaries of mitochondria  - - - - - - 0.789 0.800 0.706 
Membranes  - - - 0.849 0.857 0.774 0.848 0.865 0.763 
Postsynaptic densities (PSD)  - - - 0.827 0.825 0.669 0.844 0.820 0.653 
Vesicles  - - - 0.702 0.707 0.562 0.677 0.701 0.542 
Axon sheaths  - - - 0.426 0.938 0.818 0.353 0.872 0.920 
Average  - - - 0.747 0.855 0.743 0.741 0.833 0.743 

Tab. 3. Dice coefficient of electron microscopy data segmentation for tiny-unet-v2 model for the original dataset (ORG), 
 the dataset enriched with synthesized images (MIX) and full synthesized dataset (SYN) 

Class 
Number of classes 

binary  5 6 
ORG MIX SYN ORG MIX SYN ORG MIX SYN 

Mitochondria with the boundaries 0.931 0.938 0.890 0.938 0.928 0.887 0.944 0.945 0.843 

Boundaries of mitochondria - - - - - - 0.788 0.801 0.611 

Membranes - - - 0.847 0.855 0.776 0.850 0.854 0.754 
Postsynaptic densities (PSD) - - - 0.812 0.823 0.617 0.789 0.808 0.684 
Vesicles - - - 0.691 0.709 0.574 0.690 0.705 0.563 
Axon sheaths - - - 0.473 0.856 0.870 0.510 0.915 0.823 
Average - - - 0.752 0.834 0.745 0.761 0.838 0.713 

Tab. 4. Comparison of mitochondrial segmentation methods 

Method Number of classes Article Training dataset labels Test labels Dice 

HIVE-net[23] 1 [23] EPFL EPFL 0.948 
3D Casser et al. [24] 1 [23] EPFL EPFL 0.942 
Cheng et al. (3D) [25] 1 [23] EPFL EPFL 0.941 
U-Net 6 ours ours+syn Lucchi++ 0.939 
U-Net 1 ours ours Lucchi++ 0.937 
tiny-unet-v2 1 ours ours+syn Lucchi++ 0.935 
3D U-Net [9] 1 [23] EPFL EPFL 0.935 
tiny-unet-v2 1 ours ours Lucchi++ 0.934 
tiny-unet-v2 5 ours ours+syn Lucchi++ 0.931 
Cheng et al. (2D) [25] 1 [23] EPFL EPFL 0.928 
U-Net [5] 1 [23] EPFL EPFL 0.915 
Peng et al. [26] 1 [23] EPFL EPFL 0.909 
3D Xiao et al. [8] 1 [23] EPFL EPFL 0,9 
Cetina et al. [27] 1 [23] EPFL EPFL 0,864 
Lucchi et al. [3] 1 [23] Lucchi++ Lucchi++ 0.86 
U-Net 6 ours ours+syn EPFL 0.86 
U-Net 1 ours ours EPFL 0.859 
tiny-unet-v2 1 ours ours EPFL 0.857 
tiny-unet-v2 6 ours ours+syn EPFL 0.854 

a)  b)  c)  d)  
Fig. 7. Markup differences (backgroung – dark gray, intersection areas-light gray): (a) original EPFL slice; 

(b) EPFL(black)/ours(white) markup; (c) Lucchi++ (black)/EPFL(white) markup; (d) Lucchi++(black)/ours (white) markup 
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Thus, the table uses three markups of the same 
dataset, the difference between the markups is shown in 
the fig. 7. 

We calculate differences between markups using the 
formula 

_ _ _ _
.

_ _ _

count different areas in pixels
difference

count intersection in pixels
  

The difference result by 27 layers is: Lucchi++ vs our 
0.09, EPFL vs ours 0.21, Lucchi++ vs EPFL 0.19. This is 
significant difference. This explains the fact that the our 
test results are better for Lucci++ markup. At the same 
time, it can be noted that Lucci++, due to enhanced 
markup checking compared to epfl, like our dataset, more 
correctly solves the problem as a whole. This can explain 
the results in Table. 4, in which the model trained on our 
markup gives Dice metric 0.93+ for Lucci++, and 0.85+ 
for EPFL. 

We test U-Net (1,5,6 classes) and tiny-unet-v2 (1,5,6 
classes) trained via original dataset and dataset using 
synthetic data. For table. 4 we choose best result for original 
dataset and for original+synthetic dataset for each model. 
For example we have tiny-unet-v2 Dice results on Lucchi++ 
dataset trained via original + synthetic data for 1 class: 
0.935, for 5 classes 0.931, for 6 classes 0.93. In the table we 
put only the best result 0.935. 

The results with synthetic additive is better. The best 
results in the table. 4 belong to 3D models. This leads us 
to the idea of building a 3D synthetic dataset. According 
to the comparison Tab. 4, our approach using the 
generation of synthetic datasets gives the segmentation 
quality comparable to the current results from other 
researchers in the world on the same class. 

No one deep learning model architecture can solve the 
problem of limited training real-data datasets, and the 
generation of synthetic data will help to obtain high 
quality segmentation even on medium and small models, 
which we have demonstrated using tiny-unet-v2 as an 
example. 

The use of synthetic data for training deep models is 
becoming more widespread in various fields of science, 
and in particular in computer vision, and we follow this 
trend. We developed software for generating synthetic 
EM brain datasets; main purposes of our work were (1) to 
improve algorithms for automatic generation of a dataset 
of synthetic objects; (2) to develop a parameterization for 
an algorithm that synthesizes data; (3) to study the 
capabilities of multiclass segmentation of U-Net-like 
architectures, starting with U-Net (in this work), using 
EM-dataset, synthetic dataset and mixed dataset. 

To synthesize electron microscopy images classic 
computer graphics methods were used. A parametric 
model of a slice EM-data was constructed. The gray level 
parameters were chosen in accordance with the 
histograms of one labeled layer of the base dataset set. 
The parameters put into the geometric model were based 

on the shape of the organelles in the layers of the 
simulated data volume. For example, to select the size of 
the organelle, the largest organelle and the smallest were 
selected, and the size of the organelles was uniformly 
selected from this range. 

In order to verify the correct statistical distribution of 
intensities in synthetic images, the gray levels of the 
resulting synthetic dataset were checked using histograms 
of the entire available labeled data volume. 

We have to further develop the algorithm in collecting 
statistics of the geometric parameters of organelles and 
study the influence of parameter variability on the quality 
of the trained model. 

The approach we have developed can be used in two 
different directions. The first, narrower direction may be 
the rapid creation of synthetic datasets with the 
characteristics of individual tissues, and this is 
demonstrated in this article. Another, broader goal is to 
create a more versatile synthetic dataset that can be used 
to segment various types of data with high quality. This 
option is much more difficult to develop and validate, 
however, the potential benefit of such a solution due to its 
universality could be much bigger. 

Conclusion 

The algorithm for the automatic generation of a synthetic 
electron microscopy dataset was developed. The proposed 
approach allows generating synthetic datasets of any size, as 
well as quickly changing generation parameters to simulate 
data from various image registration devices. 

As can be seen from the Table. 2 synthetic axon 
generation gives good results in both purely synthetic and 
mixed tests. The test results depend on how similar 
structures were presented in the training and test data. 
Well-represented mitochondria are spoiled by imperfect 
synthetics. The using of synthetics for a rarely found 
axon takes segmentation to a new level of quality. 

A fully synthetic dataset that was parameterized 
according to the real EPFL dataset allows training the 
neural network with Dice metric results on test dataset 
from 0.55 to 0.92 for different classes, while training on 
real data gets results from 0.35 to 0.94, and training on a 
mix dataset gets results from 0.70 to 0.94. Synthetic data 
needs to be improved to achieve micro-realistic quality. It 
is especially necessary to add the "imperfections" of the 
EM technology, such as rough noise, blurred boundaries, 
smeared vesicles, and smearing of the mitochondrial 
interior areas. Further efforts should be made to increase 
the realism of the images. 
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