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Abstract 

A numerical algorithm is described for solving the inverse spectral scattering problem associated 
with the Manakov model of the vector nonlinear Schrödinger equation. This model of wave 
processes simultaneously considers dispersion, nonlinearity and polarization effects. It is in demand 
in nonlinear physical optics and is especially perspective for describing optical radiation 
propagation through the fiber communication lines. In the presented algorithm, the solution to the 
inverse scattering problem based on the inversion of a set of nested matrices of the discretized 
system of Gelfand–Levitan–Marchenko integral equations, using a block version of the 
Levinson-type Toeplitz bordering algorithm. Numerical tests carried out by comparing calculations 
with known exact analytical solutions confirm the stability and second order of accuracy of the 
proposed algorithm. We also give an example of the algorithm application to simulate the collision 
of a differently polarized pair of Manakov optical vector solitons. 
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Introduction 

Investigations of the polarization effects complicated 
by wave dispersion and nonlinearity are of great 
importance for modern optical technologies and nonlinear 
optics. Manakov [1], studying the phenomena of 
self-focusing and self-induced transparency of polarized 
light beams in nonlinear and dispersive optical media, 
described the vector version of the nonlinear Schrödinger 
equation, known as the Manakov model. The model 
comprises a pair of nonlinear Schrödinger equations with 
second-order dispersion and cubic (Kerr) nonlinearity for 
two optical polarizations.  This model of wave processes 
simultaneously considers dispersion, nonlinearity and 
polarization effects, is in demand in nonlinear physical 
optics, and especially for describing optical radiation 
propagation through the fiber optical communication lines 
(FOCL) [2]. 

Modern technologies for receiving and transmitting 
information over the FOCL use modulation of 
low-frequency envelope of the electric field of light wave. 
Low (compared to optical) frequency modulation of the 
envelope allows the use of electronics in the processes of 
coding/decoding information. The electric field envelope 
of optical radiation in standard single mode fiber (SMF) 
permits amplitude and phase modulation, and also enables 
to use two polarizations to increase the FOCL 
performance. Increased fibre channels performance leads 
to growth of envelope frequency and amplitude, making it 
necessary to account for dispersion and nonlinear effects 
that distort information. Nonlinear and dispersion 
distortions in the scalar approximation are described by 
the nonlinear Schrödinger equation for the field envelope 
[2]. The dispersion effects in the fiber lead to envelope 

wave packet blurring, and nonlinear effects cause 
nonlinear phase overruns, and other effects discussed in 
[2]. The interaction of dispersion and nonlinearity 
generates solitons, where the dispersion broadening is 
compensated by the nonlinear compression of the wave 
front. Polarization of radiation even more complicates the 
problem and creates new distorting information effects, in 
particular, polarization mode dispersion (PMD), when the 
two envelope polarizations have different velocities. 

The applicability of the Manakov model for the 
common description of nonlinear and dispersion effects, 
and polarization effects in fiber was studied in the works 
of Menyuk (See [3] and references there), where it was 
shown that excluding the attenuation/gain and neglecting 
PMD, the electric field envelope E with polarization 
components {E1, E2} is described by the following vector 
equation, of Manakov type:  
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with Z being a distance along the fiber, and T is time in the 
frame moving together with the the field envelope. The 
parameter 2 is the characteristic of dispersion. Note that it 
is negative for the anomalous dispersion and positive for 
the normal dispersion in the fiber. In the main focusing 
range 2 is usually assume equal – 22 ps2/km. The 
parameter  is the nonlinear Kerr coefficient. Typical 
value of  in fiber is 1.3W–1 km–1. Follow [4] and choosing 
the characteristic line length Z0 and using the values of 
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units, we define dimensionless parameters t = T/T0 and 
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q = E/E0, for which the equation (1) becomes the 
dimensionless form of Manakov equation:  
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where the vector q = {q1(z, t), q2(z, t)} describes two 
normalized polarization components of the optical wave 
envelope. The constant  in (2) is equal to +1 or –1 and 
corresponds to normal (defocusing) and anomalous 
(focusing) fiber dispersion, respectively. This Manakov 
equation as a vector form of the nonlinear Schrödinger 
equation, belongs to a nontrivial class of integrable 
nonlinear partial differential equations investigated by the 
inverse scattering transform method (ISTM) [5, 6].  The 
essence of the ISTM, an outstanding achievement of 
modern mathematical physics, is that the solution of a 
nonlinear equation is reduced to the study of linear 
operator spectral problems (direct and inverse), connected 
(associated) with the original nonlinear equation. The 
ISTM is also known as the Nonlinear Fourier Transform 
(NFT) because of the similarity to the conventional 
Fourier transform. 

For applying the ISTM, Manakov constructed the 
following linear system of equations (the Manakov 
system) for the spectral problems:  

1
1 1 2 2 3i = ,

f
f q f q f

t


  


 

2 3* *
2 1 1 3 2 1i = , i = .

f f
f q f f q f

t t

 
     

 
 (3) 

Here  is the complex eigenvalue number, ( f1, f2, f3) is 
the 3-dimensional eigenvector, and the asterisk means 
complex conjugate. In the defocusing case, the spectrum 
of the Manakov system contains only the continuous 
spectrum corresponding to dispersive waves. In the 
focusing case ( = –1), a discrete spectrum can be added to 
the continuous spectrum. This discrete spectrum 
corresponds to the soliton solutions. 

In the frame of the ISTM the solutions of the relatively 
simple Manakov system (3) are also the solutions of the 
nonlinear vector Schrödinger equation (2) of the Manakov 
model for an arbitrary fixed z. The evolution of the 
solution along the coordinate z is given by a simple phase 
factor [1, 5, 6]. We also note that the Manakov system 
turns into the Zakharov–Shabat system if one polarization 
absents and the vector Schrödinger equation becomes 
scalar. The Manakov system can be exploited to describe 
several other nonlinear problems, including the 
propagation of ultrashort polarized optical pulses in 
resonant two-level media [7]. 

The study of the scattering problems allows not only 
analytical investigations of the integrable nonlinear 
problems. The numerical implementation of the ISTM 
also represents an effective approach to solve the Cauchy 
problem of the nonlinear Schrödinger equation, with no 
iterations. ISTM for nonlinear equations with localized 

(decreasing at infinity) solutions leads to a system of linear 
integral Gelfand–Levitan–Marchenko equations (GLME), 
equivalent to the Manakov system. 

For the case of more simple scalar Schrödinger 
equation, without polarization effects, associated with the 
well-known Zakharov–Shabat (ZS) system in our 
laboratory were developed efficient computational 
algorithms - Toeplitz Inner Bordering (TIB) [9, 10]. These 
algorithms are based on the direct numerical solution of 
the GLME and belong to modifications of the well-known 
Levinson’s algorithm [11]. Their numerical efficiency is 
caused by the use of the Toeplitz symmetry of the 
discretized GLME system. The TIB algorithms were 
successfully applied to calculate the fiber Bragg 
gratings [12, 13], and solutions of inverse problems for 
the Helmholtz equation [14]. Recently in fiber-optic 
networks, these algorithms have found application to 
compensate for nonlinear-dispersive distortions of 
information signals and, in particular, for the 
development of new approaches in information 
transmission based on the integrability of nonlinear 
Schrödinger equation [15, 16, 17]. 

Due to the complexity of the problem, there are 
comparatively few works devoted directly to algorithms 
for the inverse scattering problem of the Manakov system: 
[18] proposes an iterative algorithm for solving GLME, 
but of the 1st order of accuracy; in [19] also the only first 
order of accuracy was achieved; [20] proposes a new 
perspective but not yet well known 2nd order algorithm, 
based on the Toeplitz decomposition of the block matrix of 
GLME system. The ISTM-integrable vector Schrödinger 
equation od the Manakov model is, of course, the basic 
model and it does not account for signal attenuation and 
polarization mode dispersion in fiber. However, this 
approach is in demand for numerical simulation of the 
information transfer in fiber-optical lines. We do not touch 
here on simpler direct scattering problems. The extension 
of the TIB algorithm to the inverse problems for the 
Manakov system is the main goal of the work. 

1. GLME  

The condition of rapidly decreasing at infinity solutions, 
leads for the Manakov system to a system of nine 
Gelfand-Levitan-Marchenko integral equations for the three 
three-components vectors A(0), A(1), A(2) [7, 8, 19]. However, 
it turns out that we need only three equations for the first 
components of the vector functions (0) (1) (2)

1 1 1, ,A A A  for the 
inverse scattering problem (ISP) solution. 

In the numerical algorithm, the ISP, under the 
condition of rapidly decreasing solutions, is on a finite 
interval, for example: 0  t  T. 

It is assumed that the GLME kernels 1
 (t), 2

 (t) 
vanish outside this interval, and the GLME for the left ISP 
take the following form:  

(0)* ( )
1 1

=1,2

( , ) ( ) ( , ) = 0,
t

A t s A t s ds


 

      (4) 



http://www.computeroptics.ru journal@computeroptics.ru 

858 Computer Optics, 2023, Vol. 47(6)   DOI: 10.18287/2412-6179-CO-1298 

( )* (0)
1 1( , ) ( ) ( , ) = ( ),

t

A t s A t s ds t
 



         (5) 

where – t < , s < t  T, and  = 1,2. 
The inverse scattering problem’s solution q1

 (t), q2
 (t) 

for two orthogonal polarizations connected with solutions 
of GLME equations by the synthesizing relations:  

( )*
1( ) = 2 ( , 0), = 1,2.q t A t t

     

The first step in the GLME numerical solution is a 
replacement of variables which gives us the integral 
equations with difference arguments of the kernels and 
leads to matrix blocks with Toeplitz symmetry after the 
discretizathion of these equations. Following [9, 10] we 
carry out the complex conjugation of equation (4) and 
replace of unknown functions:  
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Here and hereinafter  = 1,2. Given these notations, we 
rewrite (4) in the form:  
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Also, we respectively rewrite synthesizing relations as 
q (t) = v (t, 2t – 0). 

2. Discretization of the GLME 

Let us introduce a discrete computational grid: tm = hm/2; 
m = 1,, N; h = 2T/N; sk

 = hk; n
 = hn; n, k = 0,, m. 

Here h is the step of the grid. For the beginning we 
discretize equations (6), (7) with the 1st order of 
approximation accuracy. We replace the integrals in the 
equation (6) by the right Riemann sum:  
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Here roman letters denote the grid vectors: 
( )

;v = ( , )m
n m nv x    and * *

; = ( )n k n ks      . Since n  k, 

this sum is the multiplication of the upper triangular 
Toeplitz matrix Q with elements *

; , ;=k n n kQ h   , with 

size m×m, by the vector ( )
;v m
n . The discrete analog of the 

equation (6) now can be represented as:  
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where k = 1,, m. The integral in equations (6) also can be 
represented using the right Riemann sum as products of 
low triangular Toeplitz matrix R with size m×m and with 
elements R; n, k

 = h; n–k, where n  k, on the vector 
( )u = ( , )m

m kk u x  . Note here that matrices Q are Hermitian 
conjugations (†) of matrices R: †=Q R  . We write the 
discrete analog of equations (7) in the next form:  
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where the right part is r, n
 = – , n, and n =1,, m. With m 

changing from 1 to N we get N systems of linear equations 
(8),(9) with size of 3m×3m. 

3. First order accuracy Block TIB algorithm 

With m changing from 1 to N equations (8), (9) 
describe N systems of linear equations. These systems are 
nested one into another that resembles a bordering 
numerical algorithm. For the numerical solution of the 
ISP, it is necessary to solve all the obtained nested systems 
and determine the potential vector components: 

( )
; ;= 2v , = 1, 2,... .m
m mq m N   Gaussian elimination method 

for N nested GLME systems requires O (N4) flops. For our 
opinion the best variant of the algorithm for solving such a 
series of nested linear systems seems to be Levinson-type 
bordering algorithm [11] which in the process of this 
bordering addresses all the systems and requires only 
O (N2) flops. 

The complete system (8), (9) contains a matrix 
comprising nine Toeplitz blocks. Despite all these blocks 
being Toeplitz, the system’s complete matrix, unlike the 
case of the ZS system, does not have Toeplitz symmetry. 

We describe here an approach referred as a block one, 
based on the block notation of the discretized GLME. For 
the first order approximation accuracy, the total matrix G 
of the GLME can be represented as a block Toeplitz 
matrix comprising blocks - matrices of size 3×3. We note 
that this block matrix is Toeplitz only for the case of the 
first order accuracy approximation of the GLME. We 
write this system of equations in the block form:  
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The symbol T here stands for transposition. Total block 
matrix G consists of blocks n, n = 0,1,, m –1, and its 
Hermitian conjugates, with size 3×3:  
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where k =1,, m –1. This system of equations allows us to 
find the solution of the Manakov system with the first 
order of approximation accuracy. 

We will omit the superscript (m) for almost all matrices 
and leave only for the first ( )

1
mg  and last ( )m

mg  rows of the 
inverse matrix, that is necessary to describe the algorithm. 

For a block Toeplitz matrix, there are well-known 
block algorithms for its inversion based on the bordering 
method of the Levinson algorithm type. See, for example 
[21]. For the matrix inversion, it is enough to find 
recurrently the upper ( )

1
mg  and lower ( )m

mg  block rows of 
the inverse block Toeplitz matrix. These rows are the main 
auxiliary (block) arrays of the Levinson type inverse 
bordering block algorithm. Denote the elements of these 
block rows at the m-step of the block algorithm in the 
following form:  

( ) ( )
0 1 1 01 = ( ... ), = ( ... ).m m

m m mg X X g Y Y   (11) 

Let us introduce the next set of 3×3 matrices for a more 
convenient notation of the algorithm:  

, , , ,
ˆˆ ˆˆ= ( ), = ( ), = ( ), = ( ), , = 1,2,3.i j i j i j i jP p F f P p F f i j  

These matrices are determined by the sums:  
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 1 1 2 2 0
ˆ = ... .m m mP Y Y Y        (12) 

The sums make up the main loop of the algorithm, 
which is executed for each m from 1 to N. Note here that 
not all 36 elements of the matrices P, F, P̂, F̂, but only 
some of them are used in the block algorithm. 

The main step of the bordering algorithm is to calculate 
the first ( 1)

1
mg   and last ( 1)

1
m

mg 
  block rows of the inverse 

matrix based on their values ( )
1

mg , ( )m
mg  on the previous 

step. Algorithms like Levinson’s find new rows as a linear 
combination of the zero-padded rows of the previous step:  

   ( 1) ( )( ) ( ) ( )
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where block 0 is zero 3×3 matrix. The coefficients 
c(m), ĉ(m), d(m), d̂(m) are determined uses the main properties 
of the first and last block rows of the inverse matrix. 
Namely, multiplying the first row by the system matrix G 
results in the first row, and multiplying the last row, 
respectively, gives the last row of the block identity 
matrix. The result is the following system of equations for 
the block coefficients c and d:  

 ( ) ( )
1 1 1 1 0... = ,m m

m m mc d Y Y Y E         
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Here E is 3×3 unit matrix. The solution to this system is:  

  1
( ) ( ) ( )ˆ= , = .m m mc E PP d c P


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The solution to a similar system for ĉ,d̂ has the same 
form:  

  1
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
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4. Second order accuracy Block TIB algorithm  

The second order of accuracy spoils the Toeplitz 
structure of the system GLME block matrix G. In 
particular, the trapezoid formula, which provides the 
second order of accuracy, leads to the change in the first 
and last block columns of the matrix, as well as the blocks 
of its main diagonal. The non-Toeplitz structure formally 
does not allow the use of effective Levinson-like 
algorithms for inverting the system block Toeplitz matrix. 

We proposed the basic idea of solving the system of 
equations for the second order of accuracy in [10]. This 
idea uses the transfer of part of the unknowns from the 
GLME to the right side and excludes the equation for 
index 0. The system block matrix becomes Toeplitz again, 
but unknowns appear on the right side of the equations. 
After the procedure, the system block matrix again takes 
the Toeplitz form as in (10). However, the diagonal blocks 
of the system matrix 0 and the right side have changed:  

* *
1;0 2;0

0 1;0

2;0

1
2 2

= 1 0 ,
2

0 1
2

h h

h

h

     
 
   
 
  
 

 

( ) ( )
1; 1 2; 11; 2;

( ) ( )
1;1

( )
2;1

( v v )
2

= (1 u ) ,
2

(1 u )
2

m m
m k m km m

m m
kk

m
k

h

h
r

h

   
    
 
    
 
    
 

 

k = 1,, m. Note that not all unknown elements appear on 
the right side, but only the first ( )

1u m  and two last 
elements ( ) ( )

1; 2;v ,vm m
m m  . The knowledge of the fundamental 

properties of the inverse block Toeplitz matrix makes us 
possible to find an efficient TIB calculation algorithm with 
the second order of approximation accuracy. Multiplying 
the first and last rows of the inverse matrix by the right 
side of the GLME system, we get a pair of equations for a 
pair of unknowns - for the first and for the last element of 
the block vector of unknowns. Since we search only for 
the last element of the vector, as a result, we get a solution 
of the GLME with the second order of accuracy. This 
formal scheme becomes more complicated in the case of 
the block Toeplitz matrices. The vector of unknowns for 
the block version of the Manakov system comprises 
columns contains of three elements ( ) ( ) ( )

1; 2;(u ,u ,u )m m m T
k k k . As 
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a result, after multiplying the right side by the first ( )
1

mg  
and last ( )m

mg  block rows of the inverse matrix, we get a 
system of six equations for the columns ( ) ( ) ( )

1 1;1 2;1(u ,v ,v )m m m T  
and ( ) ( )( )

1; 2;(u ,v ,v )m mm T
m m m . Recall that at the m th step of the 

algorithm, we are looking for only the last two elements 
( ) ( )
1; 2;,m m

m mv v . The resulting system of six scalar equations can 
be represented as a pair of linear systems with 3×3 blocks:  
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From the six equations of the system (16), we singled 
out a simpler subsystem of only three equations containing 
the components ( ) ( )

1; 2;v ,vm m
m m  of the potential vector sought 

at each step. The solution of the system (16) with the 
second order of accuracy is:  

21 33 21 23 31( )
1;

11 22 33

ˆ ˆˆ ˆ ˆ2 2
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ˆ ˆ2
m
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p f p f p

h f f f

   
     

 

31 22 31 32 21( )
2;
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ˆ ˆˆ ˆ ˆ2 2
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ˆ ˆ2
m
m

p f p f p

h f f f

   
     

 (17) 

The solution (17) completes the block algorithm of the 
second order of approximation accuracy. 

5. Schematic of the second order Block TIB algorithm  

The main steps of the second order block TIB 
algorithm are: 

1) For m = 1 calculate initial value for the auxiliary array: 
(1) 1

01 = ( )g  , and calculate P and P̂ 3×3 size 
matrices: (1) (1) †

11 1 1
ˆ = , =P g P g   , and also 

calculate matrices F and F̂: 
(1) (1) †

11 1 1
ˆ= , =F g F g    (of course, we calculate 

only those elements of the matrices that are used in 
the algorithm);  

2) Find m th component of the solution vector 
( )

1; 1;= 2 m
m mq v , ( )

2; 2;= 2 m
m mq v , uses (17). This is the 

output at every step;  
3) Calculate the block coefficients c(m), d(m), ĉ(m), d̂(m), 

uses (14) and (15);  
4) Determine next step for the auxiliary arrays, i.e. rows 

( 1)
1

mg   and ( 1)
1

m
mg 
 , uses (13);  

5) Find the necessary elements of the new matrices 
P, F, P̂, F̂ by calculating the sums (12);  

6) Increment m and go to the step 2 while m < N.  
This schematic corresponds to the working interval 

[0, T]. However, this algorithm is invariant regarding the 
choice of the working interval and the origin of the 

coordinates, as are for most equations and algorithms in 
mathematical physics. When the interval is changed, only 
the calculation grid changes but the algorithm itself does 
not change. 

6. Numerical simulation  

To test the algorithm, we mainly used an exact 
analytical solution of the Manakov model - the Manakov 
optical vector soliton. The soliton, as a solution of the 
GLM equations for the eigenvalue of the discrete spectrum 
 =  + i, has the following form:  

i( 2 )1
1 0( ) = 2 (2 ( ))cos( ),tq t e sech t t        

i( 2 )2
2 0( ) = 2 (2 ( ))sin( ),tq t e sech t t        (18) 

where t0 sets the position of the soliton center, 1,2 are the 
phases of the soliton components, and  is the polarization 
angle. This soliton is the solution of the ISP for the 
following kernel of the integral equations of GLM:  

2 ( ) i( 2 )0 1
1( ) = 2 cos( ),t t tt e          

2 ( ) i( 2 )0 2
2 ( ) = 2 sin( ).t t tt e          (19) 

The Fig. 1 shows the dependence of the total error of 
restoring the Manakov vector soliton on the number of 
calculation points on a logarithmic (base 2) scale. The 
straight line corresponds to the linear fitting of this 
dependence. This line is described by the line function 
y = 9.26968 – 2.00027x. The second fitting parameter 
2.00027 is very close to the value 2. It means that the error 
drops by a factor of 4 when the number of points doubles, 
which proves the second order of approximation accuracy 
of the block TIB algorithm. The ISP for the Manakov 
vector soliton solution was solved on the interval 
t[–10, 10] for the following set of the soliton parameters: 
 = –3,  = 1, t0

 = 4, 1
 = – 5 /6, 2

 =  /4,  = 7 /9. 
The "flat" solutions of the Zakharov-Shabat system, 

which are also partial solutions of the Manakov model, were 
also used for testing the algorithm. In particular, the tests used 
a secant potential [22], q = A sech (t), which contains a 
discrete spectrum, along with a continuous one, depending on 
the amplitude of A of its polarizations. Numerical simulation 
for this solution also showed the stability and efficiency of 
the presented block TIB algorithm. 

The running time of the described algorithm does not 
depend on the length of the line but depends quadratically 
on the size of the discrete grid N, as for the case of scalar 
TIB. This time, of course, greatly depends on the software 
used. Its estimate can be obtained by comparing it with the 
execution time of a calculation using a similar algorithm 
described in [20]. Preliminary calculations showed that the 
presented algorithm is not inferior in terms of computation 
speed to the algorithm described in [20], where the 
running time depending on N is estimated as 1.35N210 –5 
seconds. This estimate is for GNU Fortran program, 
running under Windows 7, 64-bit, Intel Core i7 Q720, 4 
cores, 1.6 GHz base clock, 10 GB RAM.  
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Fig. 1. Inverse scattering problem: Log-Log dependence of the 
recovery error for the Manakov vector soliton solution on the 

number of calculation points for the block TIB algorithm 

The algorithm turned out to be very convenient for 
modeling collisions (interactions) of polarized optical 
vector solitons in the Manakov model. We present here a 
result of this simulation as an example of the application of 
the method. The analytical formulas for the 2-soliton 
solution in the Manakov model are very cumbersome. 
However, the GLME integral kernel has a relatively 
simple form: it is the sum of the kernels (19) of the two 
Manakov vector solitons. Solving the ISP for these kernels 
using the block TIB algorithm, we numerically find the 
2-soliton solution. This solution can be interpreted as a 
result of a collision of a pair of differently polarized 
Manakov solitons, if the solitons parameters are properly 
chosen. In this calculation, the following two sets of data 
for pairs of soliton kernels were used: 1

 = 0, 1
 = 0.5, 

t1,0
 = 0, 1,1

 =  /6, 1,2
 =  /6, 1

 = 0 and 2
 = 1, 2

 = 1, 
t20

 = 1, 2,1
 = 2 /6, 2,2

 = 2 /3, 2
 =  /2. Here the first 

index is the number of the soliton. Fig. 2 shows the result 
of a numerical simulation of the collision pattern of two 
differently polarized Manakov solitons, as an illustration 
of the algorithm capabilities. This Figure illustrates the 
possibility of an envelope signal to contain the amplitude, 
phase and polarization components of information, which 
theoretically allows the implementation of complex 
amplitude-frequency-polarization modulation formats for 
more efficient transmission of information through the 
optical lines.  

 
Fig. 2. The algorithm aprobation: simulation of the collision 

of two differently polarized Manakov solitons 

For comparison, Fig. 3 shows the envelope signal 
intensity (|q|2) distribution in time for the collision of two 
differently polarized Manakov solitons. In this signal, the 
phase and polarization components of information are 
completely lost, and only amplitude modulation of the 
signal can be used to information transmission. This 
variant was used at the initial stages of optical information 
transmission technology.  

 
Fig. 3. Envelope signal intensity time distribution for the 
collision of two differently polarized Manakov solitons 

Conclusion  

The paper describes an efficient numerical algorithm for 
solving the inverse spectral scattering problem associated 
with the Manakov model. The model comprises a pair of 
coupled Schrödinger equations with second-order 
dispersion and cubic (Kerr) nonlinearity for two optical 
polarizations. This model of wave processes simultaneously 
considers dispersion, nonlinearity, and polarization effects. 
It is in demand in nonlinear physical optics and is especially 
perspective for describing optical radiation propagation 
through the fiber communication lines. 

The study of the scattering problems for the Manakov 
system, associated with the model, leads to a system of 
linear integral equations - GLME. The numerical solution 
to the inverse scattering problem based on the inversion of 
matrices corresponding to the discretized system of 
GLME, using the described block version of the 
Levinson-type Toeplitz inner bordering (TIB) algorithm. 
Numerical tests performed by comparing the results of 
calculations with the known exact analytical solutions 
(Manakov vector soliton and Sech-potential) confirm the 
stability and second order of accuracy of the proposed 
algorithm. We also include an example of the algorithms’ 
application to simulate the collision of the differently 
polarized pair of Manakov vector solitons. 
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