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Abstract 

The presence of haze on images degrades the quality of perception and automatic analysis of 
scenes. One of the most popular methods of haze removal is the dark channel prior method, which 
is based on the Koschmieder atmospheric scattering model. However, its underlying assumptions 
are not met for nighttime, since localized light sources make a significant, if not the main, contri-
bution to lighting. We propose here to use the degree of belonging of an image element to a local-
ized light source, determined based on a one-class classifier, as a value that characterizes the con-
fidence of the corresponding element of the estimated transmission map during its rectifi-cation 
based on the gamma-normal model, which makes it possible to increase the accuracy of dehazing 
when processing images, captured in low-light or nighttime conditions. 
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Introduction 

Surveillance systems have become increasingly popu-
lar in recent years. The presence of fog, haze, dust and 
other particulate matter in the atmosphere is a typical en-
vironment for outdoor systems. The presence of fine scat-
tering particles significantly degrades visibility on imag-
es, captured in such conditions, which leads to difficulty 
in the perception of scene objects by a person, as well as 
increases errors rate in the operation of various automatic 
image analysis and enhanced vision systems. 

Since the degree of absorption and scattering of at-
mospheric light depends on the distance from the observ-
er to the object, depth information is essential for haze 
removal. At the same time haze removal approaches, 
based on a known depth map, are not suitable for dehaz-
ing images in real-world applications due to a serious 
limitation – specifically, depth information must be pro-
vided by a user or obtained using supplemental equip-
ment. Therefore, we consider here single-image haze re-
moval methods. 

The method for removing haze from images, based on 
the concept of a dark channel, proposed by He et al. [1], 
currently establishes a leading position among methods 
for processing images, taken in hazy conditions or in the 
presence of fine particles in the atmosphere. This method 
is based on the observation that at least one channel in the 
RGB color space contains pixels of low intensity in local 
areas of the image that do not contain haze. 

Later, Berman et al. [2], suggested that the saturation 
of an image without haze can be expressed using several 
different colors that form dense clusters in the RGB color 
space and are non-locally distributed throughout the im-
age. In hazy images, due to differences in atmospheric 

scattering, each color cluster forms the haze line. The 
method employs these lines to reconstruct the haze-free 
image. Zhu et al. [3] proposed an a priori color fading 
model for determining scene depth using a linear dehaz-
ing model. 

Most haze removal methods use the Koschmieder at-
mospheric scattering model [4]. However, its underlying 
assumptions are not met for nighttime, since a significant, 
if not the main, contribution to the formation of illumina-
tion is made by localized light sources. 

Haze removal methods, based on deep learning [5 –
 7], also suffer from the mentioned disadvantages. Diffi-
culties in obtaining pairs of haze and haze-free image, 
taken simultaneously have led to the fact the vast majori-
ty of hazed and haze-free image pairs in public datasets 
[8, 9] used for training are synthesized using the same op-
tical model [4]. Therefore, images obtained in low light 
conditions and with the presence of localized light 
sources most often do not consider the effect of haze on 
illumination from localized sources. 

We propose here to use the degree of belonging of an 
image element to a localized light source, determined 
based on a one-class classifier, as a value that character-
izes the confidence of the corresponding element of the 
estimated raw transmission map during its rectification 
using the gamma-normal model, which makes it possible 
to increase the accuracy of dehazing when processing im-
ages, captured in low-light or nighttime conditions. In 
addition, we noticed that images, containing large areas 
that are capable to reflect extensive light close in spectral 
composition to the light of localized sources, lead to er-
roneous airlight estimation. In this work, we decided not 
to consider the image pixels, belonging to point light 
sources with a high score (the accepted threshold is equal 
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to 0.7), for assessing atmospheric illumination. As a re-
sult, we improve the quality of the proposed dehazing 
method for images, obtained with sufficient illumination. 

The experimental results demonstrate improvements 
in the haze removal quality of the proposed method in 
comparison with the previously proposed [10], as well as 
other methods involved in the experiments. In addition, 
the proposed method has the least computational com-
plexity among the compared methods. 

1. Related work 

Our recently proposed image haze removal method 
[10] utilizes the one-class classifier, based on support 
vector data description (SVDD) [11], to estimate the 
probabilities that image elements belong to localized light 
sources. In addition, to refine the rough transmission 
map, derived from the dark channel, a structure transfer 
filtering method, based on the probabilistic gamma-
normal model [12], was applied. This method is consid-
ered here as the baseline method. 

The general structure of the baseline method consists 
of the following major stages [10]: transmission map 
evaluation, localized light sources estimation, airlight es-
timation, transmission map refinement, restoration model 
evaluation, haze removal based on the restoration model. 

1.1. Optical model 

The Koschmider model of atmospheric scattering [4] 
is widely used in haze removal methods. It describes how 
the image at the point of observation Ic(s) is formed as a 
result of refraction, reflection, and mixing of the incident 
and reflected light as a result of interaction with particles 
suspended in the atmosphere: 

        1 ,c c cI J T A T  s s s s  (1) 

where S = {s = (s1, s2): s1 = 1,…, N1, s2 = 1,…,N2} is the 
discreet image pixels grid, Ic(s)is the hazy image intensity 
value at the position sS in the color channel c{r, g, b} 
of RGB color space, Jc(s) is the haze-free image intensity 
value at the same position, and the color channel c, Ac is 
the airlight of the color channel c and T(s) is the medium 
transmission map. 

The model assumes that particles are evenly distribut-
ed in space, so their number between the object and the 
observation point increases evenly as the distance from 
the object to the observation point increases. Another as-
sumption is the independence of the scattering coefficient 
from the wavelength: 

( )( ) ,dT e ss  (2) 

where d(s)is the scene depth at the position s and  is the 
scattering coefficient. 

1.2. Dark channel prior 

In the baseline method, we employ Dark Channel Pri-
or [1] for estimating atmospheric light and the medium 
transmission map. The dark channel is defined as follows: 
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where (s) is a local patch (L×W pixels), centered in sS. 
Taking the local patch (s) as approximately uniform, 

and computing the dark channel on both sides of equation 
(1) after the normalization by Ac, it becomes: 
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The intensity of the dark channel of a haze-free image 
tends to be zero, and the intensity of atmospheric light goes 
to max value, so the medium transmission map becomes: 
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s  (5) 

Thus, expression (5) allows us to evaluate the trans-
mission map from a known image with haze, dividing it 
into small patches where the assumptions made above are 
valid, and applying a minimal filter to them. 

1.3. The airlight estimation in the presence of localized 
light sources with one-class classifier 

The estimation of the airlight vector takes an im-
portant place in the Koschmieder atmospheric scattering 
model (1) and strongly influences the result of haze re-
moval. We follow here the He et al. [1] method in gen-
eral, but the haze formation model (1) takes into account 
a single global illumination source. The problem is that at 
night, the brightest areas of the image mainly correspond 
to localized light sources, but not to the sky region. In the 
previous work [10], we proposed to use the estimates of 
the pixel belonging to a point light source, made by a 
one-class classifier, by applying these estimates as a mask 
during obtaining a dark channel before estimating the at-
mospheric light and transmission map. So, the pixels of 
the dark channel decrease their value according to the es-
timates of the belonging of the corresponding pixels to 
point light sources, which reduced the chance, that these 
pixels will be used in the assessment of atmospheric il-
lumination, but at the same time, distorted the transmis-
sion map. 

Coordination of local solutions of a one-class classifi-
er was carried out simultaneously with the dark channel 
rectification within a single procedure. For this, the 
gamma-normal model was used. 

1.4. Transmission map rectification based  
on gamma-normal model 

Equations (3 – 5), allow us to obtain a rough approxi-
mation of a real transmission map by finding the mini-
mum within the local sliding patch. The structure trans-
ferring filter based on a probabilistic gamma-normal 
model was introduced in [12] to refine the transmission 
map and thus suppress the halo artifacts in the final 
dehazed image.  
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The main idea is to consider the resulting transmission 
map as a field of continuous random variables, which rep-
resent medium transmission at each point and the distribu-
tion of these random variables is also considered random. 
This distribution is characterized by the moments - math-
ematical expectation and covariance matrix. It will be con-
venient for us to use the inverse value, the precision, in-
stead of the covariance. Let us assume the distribution of 
the mathematical expectation to be Gaussian and the preci-
sion is distributed independently for each picture element 
according to the gamma distribution. The normal and 
gamma distribution form the conjugate family and leads to 
highly efficient image processing procedures. 

The sought-for mathematical expectations X = (xs, sS) 
and precisions  = (s, sS) form the hidden component and 
observations Y = (ys, sS) form an observable component of 
two components random field [(X, ), Y]. 

Bayesian MAP estimation of a hidden field (X, Y) 
leads to the following optimization problem: 

,
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where G is the variable adjacency graph having the form 
of a lattice for images,  and  are structural parameters 
which control the degree of image smoothing and selec-
tivity respectively. 

Note, that the precisions field  = (s, sS) can be 
treated as a kind of a penalty on the difference between 
values of two corresponding neighboring variables xs' and 
xs'', (s', s'')G, and thus represents structural information 
about dependencies between elements of the hidden field. 
Taking into account that the structure of the transmission 
map and the initial hazed image are similar, the latter can 
be used as an additional guided field Xg to transfer the 
structure of local relations between elements of the 
source image to the result of processing. 

Criterion (6) gives the following relations for optimal 
 with fixed X and structural parameters , . The esti-
mates , in turn, give the optimal estimates X of the hid-
den field X: 

 '
( , ) G

2 2
' ' ''

( , ) G

ˆ 1 / ( ) ,

ˆˆ arg min ( ) ( ) .

g g

X S

x x

X y x x x

 


 

 
       

 
 

     
 



 

s s s
s' s''

s s s s s
s s' s''

 (7) 

The parametric procedure of dynamic programming 
was used to optimize criterion (7), based on the approxi-
mation of the lattice-like adjacency graph of image ele-
ments G by a sequence of horizontal and vertical trees 
[12]. Therefore, the method has linear computational 
complexity relative to the number of image elements.  

In our case the rough transmission map T plays a role 
of the observable component Y and the resulting trans-
mission map Trect corresponds to the hidden component X 
of the two components random field. Considering (6) we 
obtain: 
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According to the concept of exponential variation, in-
troduced in [13], based on the observation that the medi-
um transmission map depends on scattering coefficient 
and depth exponentially, the medium transmission map 
was rewritten as follows: 

   ˆ ,ˆ ( )rectT T


   ss  (9) 

where r̂ectT is the transmission map, rectified using the 
gamma-normal model (8), ε is a prediction error of the 
model,  is a scattering coefficient, and γ is an exponen-
tial factor. 

Values of parameters , γ, and ε were found in [13] by 
particle-swarm optimization of PSNR on the Middlebury 
dataset [14]:  = 0.5880, γ = 1.9898 and ε = 0.1492. 

Finally, the restored haze-free image can be obtained 
by the following known equation, derived from (1): 
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2. Proposed method 

Although the previously presented method [10] makes 
it possible to exclude the influence of point light sources 
on the atmospheric light estimation, nevertheless, the 
transmission map in the overexposure areas was not esti-
mated correctly, since the underlying assumptions on the 
model (1) are not met in these areas. In this section, we 
present a new approach to transmission map estimation in 
haze removal tasks, which employs the likelihood of be-
longing an image element to a localized light source as a 
measure of confidence during transmission map rectifica-
tion. According to this approach, during the transmission 
map estimation, the confidence in the dark channel in ar-
eas of the image, that have a high score of belonging to 
point light sources, will be low, and estimation in these 
areas will be based on the estimates of the transmission 
map in neighboring elements. 

Fig. 1 demonstrates the full flow chart of the present-
ed method. Further in this section, we describe the pro-
posed changes from the baseline [10] method. 

2.1. Atmospheric light estimation 

Here we use a one-class classifier for airlight estima-
tion in the same way, as described in [10]. The classifier 
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evaluates the score of each pixel of the original image in 
such a way that the score is close to 0 if the correspond-
ing pixel most likely belongs to a localized light source, 
and close to 1 if a pixel is most likely associated with the 

rest of the scene. The resulting mask represents a distrib-
uted illumination caused by different illumination sources 
and plays a role, similar to the glow image in the method 
of Li et al. [15]. 

 
Fig. 1. Full flow chart of the presented method

Since the one-class classifier evaluates the degree 
of likelihood of each pixel to a point light source, the 
elements of the resulting score map are inconsistent. In 
our previous work [10], the matching of local solutions 
of a one-class classifier was carried out using the 
gamma-normal model simultaneously with the dark 
channel rectification within a single procedure. Since 
in the current work it was proposed to use estimates of 
the pixel belonging to localized light sources for inter-
polation of the transmission map, the procedures of 
joint estimation of airlight and the transmission map 
had to be separated. Therefore, in this work, we em-
ploy a simple quadratic model to adjust the local solu-
tions of the one-class classifier: 
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where W = (ws, sS) is a hidden component of the two 
components random field (W, WSVDD), representing the 
resulting consistent localized light sources map, 

( , )SVDD
SVDDW w S s s is the original localized light 

sources map, obtained by SVDD one-class classifier. 
Note, that the impulse response of the such filter is simi-

lar to the ideal Point Spread Function (PSF) [16]. The 
meaning of the other variables is the same as in (6). 

The procedure of finding the optimal solution of (11) 
is extremely fast and does not give a big degradation of 
computational speed, but made it possible to improve the 
quality of the transmission map estimation. 

In addition, we noticed that images, containing large 
areas that are capable to reflect extensive light close in 
spectral composition to the light of localized sources, lead 
to erroneous airlight estimation. To remedy this problem, 
in this work we additionally check the number of pixels 
corresponding to localized light sources. Heuristically, 
we accept the threshold for the proportion of such pixels 
equal to 0.7. If the proportion is lower, as in [10], the 
consistent localized light sources map is used as a mask 
for the dark channel; if the threshold is exceeded, then it 
is rejected and is not used as a mask for the dark channel. 

, if ( ) 0.7
.
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w mean W
w


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

s
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2.2. Transmission map rectification 

In this paper, we propose to use the coordinated lo-
calized sources map (12) for transmission map rectifi-
cation using the gamma-normal model (8). It is sup-
posed to use the values W = (ws, sS) (12) as a coeffi-
cients, regulating the penalty for the mismatch be-
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tween the elements of the resulting Trect and observed 
T maps in equation (8): 
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Coefficients W = (ws, sS) correspond to the inverse 
variation of observations in the gamma normal model. As a 
result, in the areas of the image with the localized light 
sources, elements ws will be close to 0, therefore, the pen-
alty for the difference between the estimated transmission 
map elements, based on the dark channel, and the desired 
transmission map, will be insignificant. So, the estimation 
of elements, belonging to such areas, will be based on the 
neighboring elements of the transmission map. 

Fig. 2a and b demonstrates the baseline and pro-
posed transmission maps, respectively. As it can be 
seen, the area of the rectified transmission map that is il-
luminated by the car’s headlights, as well as the head-
lights themselves, has a brighter light, which corre-
sponds to a smaller amount of scatter than on the raw 
scatter map. This result is obtained because the rectified 
transmission map in this area relies on interpolation 
over the transmission map elements that are located 
around this area and does not use the dark channel val-
ues. The large scatter in this area on the baseline trans-
mission map was obtained because the dark channel is 
based on model (1), which does not assume the presence 
of localized light sources, due to which car headlights 
are perceived as an atmospheric light source, and there-
fore, assumed as the more distant object. 

a)  

b)  
Fig. 2. The baseline (a) and proposed (b) estimations of the 

transmission map 

3. Experimental results 

Comparative experiments were carried out using 
the proposed method and other known dehazing meth-

ods [1 – 3, 6, 17]. For tests, we use datasets, consisting 
of both synthesized daylight images (SOTS from the 
RESIDE set [9]) and real images, obtained in high [18, 
19] and low light conditions in the presence of local-
ized light sources [20, 21]. PSNR and SSIM were used 
as metrics.  

Table 1 demonstrates the quality improvement of the 
haze removal of the proposed method compared to the 
baseline [10] by ~ 4.6 % and ~ 4.1 % on daylight datasets 
(i-haze, o-haze, SOTS-indoor, SOTS-outdoor); ~ 10.4 % 
and ~ 14.3 % on datasets with images with presence of 
localized light sources (night-haze, night-haze-ext) by 
metrics PSNR and SSIM, respectively. Fig. 3 demon-
strates that both (the proposed and the baseline) methods 
overperform other methods in the operation speed. More-
over, the proposed method overperforms the baseline by 
~ 6.7 % and ~ 7.1 % on average over all datasets in terms 
of PSNR and SSIM. 

 
Fig. 3. Changing the mean calculation time over 69 images 

from the o-haze [19] and night-haze [20] datasets for different 
images resolutions 

Conclusions 

Improvements in the previously published method 
[10], which consists in excluding the localized light 
sources from both the atmospheric light and the trans-
mission map estimations, make it possible to use the 
atmospheric scattering model [4] in low light condi-
tions and in the presence of localized light sources. 
Experiments show better results in terms of PSNR and 
SSIM metrics compared to the baseline method [10], 
as well as for the methods under evaluation. The aver-
age SSIM metric over the datasets demonstrates an ad-
vantage compared to other methods and the same 
could be said about the PSNR metric for all the meth-
ods except the Qin et al. [6] method. 
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Tab. 1. Quantitative dehazing results for comparative methods by PSNR and SSIM metrics 

 PSNR 
Method I-Haze  O-haze SOTS-

indoor 
SOTS-
outdoor 

Night-
haze 

Night-
haze-ext 

Average 
on day-
light da-
tasets  

Average 
on da-
tasets 
with lo-
calized 
light 
sources 

Average 
 

Dhara et 
al. [17] 

13.43 16.27 19.60 16.62 18.59 19.28 16.48 18.94 17.30 

Qin et al. 
[6] 

15.65 14.67 29.58 19.48 19.37 18.99 19.85 19.18 19.62 

Berman et 
al. [2] 

15.81 15.71 17.28 17.96 15.76 14.60 16.69 15.18 16.19 

He et al. 
[1] 

11.91 15.11 16.56 14.40 17.42 17.39 14.50 17.41 15.47 

Zhu et al. 
[3] 

16.66 16.50 19.05 22.05 17.65 19.74 18.57 18.70 18.61 

Baseline 
[10] 

16.53 15.57 16.75 20.80 20.70 18.82 17.41 19.76 18.20 

Proposed 16.52 17.59 17.66 21.07 22.87 20.77 18.21 21.82 19.41 
 SSIM 
Dhara et 
al. [17] 

0.64 0.69 0.86 0.80 0.71 0.63 0.75 0.67 0.72 

Qin et al. 
[6] 

0.70 0.60 0.97 0.84 0.74 0.63 0.78 0.69 0.75 

Berman et 
al. [2] 

0.75 0.73 0.78 0.83 0.73 0.56 0.77 0.65 0.73 

He et al. 
[1] 

0.58 0.66 0.80 0.75 0.49 0.60 0.70 0.55 0.65 

Zhu et al. 
[3] 

0.73 0.66 0.81 0.89 0.62 0.69 0.77 0.66 0.73 

Baseline 
[10] 

0.71 0.65 0.80 0.81 0.64 0.61 0.74 0.63 0.70 

Proposed 0.72 0.70 0.82 0.82 0.74 0.69 0.77 0.72 0.75 
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