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Abstract 
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Introduction 

The widespread use of video information puts forward 
ever-increasing requirements, both for technical means 
and for image processing methods aimed at improving 
the perception, analysis, recognition and interpretation of 
images for decision making. A key operation in solving 
applied problems of image and video data processing in 
various fields [1, 2] is image registration. It involves find-
ing a function or parameters of a given function that es-
tablishes correspondences between conjugated points of 
two or more images. In this case, these can be both 
frames of the same video sequence, reflecting the dynam-
ics of the scene, and images formed by different devices, 
received at different times, in different spectral ranges. 
The registration result can be either the final product or a 
link in solving another problem. For example, when 
combining images according to the registration results, 
they are reduced to common coordinates by a spatial ge-
ometric transformation, before being complexed; when 
identifying the object of interest its parameters are found.  

Mutual geometric deformations of the registered im-
ages can be either global, i.e. inherent in the entire area of 
the processed image, or local, i.e. restricted to particular 
areas. When processing images, both types of defor-
mation need to be described using some mathematical 
models. Thus, the images of the same scene taken at dif-
ferent camera angles are described by a projective model 
[3], the estimation of the parameters of which requires 
significant computational costs. At the same time, the ter-
rain can add local distortions. To describe local defor-
mations, simpler models, for example, an Euclidean one, 
are often sufficient.   

As already noted, the problem of image registration 
arises in a variety of fields: in medicine, for example, 
when combining images of positron emission, magnetic 

resonance and computed tomography [4, 5], monitoring 
by video information of the dynamics of changes in ele-
ments of industrial facilities [6], constructing trajectories of 
unmanned aerial and underwater vehicles [7], monitoring 
the Earth's surface [8], mapping the soil and vegetation 
cover by remote sensing [9], detection of changes [10], de-
tection and identification of objects of interest [11, 12], in-
creasing informativeness [13], and many others.  

Taking into account the variety of problems arising 
from various restrictions on the source data and the math-
ematical apparatus used, image registration methods have 
been intensively developing for several decades and are 
becoming increasingly widespread. Many effective ap-
proaches focused on various applied problems have been 
proposed. Conventionally, these approaches can be divided 
into two large categories: image registration based on key 
features [14, 15] and based on intensities [16]. In situations 
where the linked images have a different structure (for ex-
ample, obtained from different spatial coordinates and/or at 
different times) or nature (formed in different spectral 
ranges), the identification of key features is often difficult 
and the binding parameters are unreliable. The intensity-
based registration is based on an estimate of the numerical 
value of some given measure of similarity of the studied 
images and does not require searching for any features.  

The difficulties that arise when registering multispec-
tral and multi-temporal images are due to the fact that, in 
addition to different camera angles and shooting scales, 
such images often have significant mutual nonlinear 
brightness distortions and pulse interference of a priori un-
known type. At the same time, traditional methods, for ex-
ample, SIFT [17] and SURF [18], using reference marks 
[19], sequential analysis [20] in difficult conditions have 
low accuracy and reliability. Good resistance to conditions 
of a priori uncertainty is provided by procedures for sto-
chastic non-identification registration of images [21, 22] 
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based on information-theoretic measures [23]. In the syn-
thesis of such procedures, information-theoretic similarity 
measures, in particular, mutual information (MI) of images 
[24], are chosen as objective functions. 

1. The problem statement 

When registering several images with a view of re-
ducing the error, each subsequent image is referenced to 
some image conditionally taken as reference. Then, in re-
lation to it, the other images will have spatial defor-
mations, whose parameters need to be determined. If an-
other image is selected as the reference image, then the 
images are still bound in pairs. Therefore, we will consid-
er the binding of two images: a reference Zr and a de-
formed one Zd, assuming that the conjugate points of these 
images can be found using a given model of geometric de-
formations with a set of parameters . The determination 
of optimal binding parameters using the mathematical ap-
paratus of non-identification stochastic adaptation [25] is 
reduced to a recurrent search for the extremum of a multi-
dimensional objective function Q(, Z r, Zd ) in the parame-
ter space. The parameter vector corresponding to the ex-
tremum is considered to be optimal.  

Stochastic algorithms for estimating image registra-
tion parameters  are based on a relay stochastic gradient 
adaptation procedure, which can be written as:  

 1 t Q 1ˆ ˆ ˆ , ,r d
t t t t   α α Λ α Z Z , (1) 

where Q(ꞏ) is the stochastic gradient of the objective 
function  1ˆQ , ,r d

t tα Z Z ;  
t is the gain matrix that de-

termines the rate of change of the estimates ˆ tα ; rZ  is the 
image Z r, resampled at the t-th iteration according to the 
estimates 1ˆ tα  obtained at the previous iteration; 1,t T  
is  the iteration number. 

The speed of (1) is determined primarily by the com-
putational costs of finding the stochastic gradient Q(ꞏ). 
To reduce them, it is advisable to use at each iteration on-
ly a small part of the pixels r r r

t t tz Z j Z  and 
d d d

ttz Z j Z  of images rZ  and Zd, which we will call 
the local sample r d

tt tZZ Z  , where jtZ are the co-
ordinates of the pixels included in the local sample Zt. 
The rule for choosing these coordinates can be different, 
in particular, it can depend on the iteration number or the 
local sample pixel coordinates can be chosen randomly 
with equal probability. In general, the optimization prob-
lem [26] of determining the image area from which pixels 
are selected as a function of the iteration number and the 
autocorrelation function of image brightness requires a 
separate study for each type of objective function. 

The stability of the calculated estimates of the regis-
tration parameters to the conditions of a priori uncertainty 
of the image parameters and brightness noise is provided 
by a relay stochastic procedure in which the sign function 
is used to limit the variability of the estimates: 

 1 t Q 1ˆ ˆ ˆsign ,t t t tZ   α α Λ α . (2) 

The objective of this study is to synthesize relay sto-
chastic algorithms for estimating image registration pa-
rameters when choosing the objective function of the es-
timation quality. Such functions are Shannon, Renyi and 
Tsallis MI. In this case, the stochastic gradient of MI 
should be obtained on the basis of partial derivatives of 
MI entropies. Solving this problem is important because 
it provides a basis for analyzing the effectiveness of oth-
er, more simplified approaches. In particular, when using 
the histogram method [27] or estimating the stochastic 
gradient of objective function by finite differences [28]. 
Another problem is to experimentally estimate the effi-
ciency of the obtained algorithms under noisy conditions. 

2. The synthesis of image registration algorithms  
based on mutual information 

2.1. Stochastic gradients of mutual information  
of the studied images 

The numerical values of Shannon MI [29] at the t-th 
iteration can be found by a well-known expression using 
Shannon entropy:  

     ˆ ˆ ˆQ ,r d r d
StS S tt SH H H  Z Z Z Z  , (3) 

where  ˆ
tS
rH Z  and  ˆ

tS
dH Z  are Shannon entropy esti-

mates of images r
tZ  and Zd;  ˆ ,r d

S tH Z Z  is the estimate 
of the joint Shannon entropy of these images.  

The estimates of Shannon entropies from a local sam-
ple of images can be found by the formulas: 

     *
2

* *ˆ log
Z

t t tS z zH p p


 
j

j jZ   , (4) 

 
       2

,

ˆ

log ,

,

i k Z

r d
t

r d r d
ti tit

S

k tkz z z z

H

p p p p




 
j j

j jj j

Z Z

   (5) 

where  d
tp zj ,  r

tp zj  and  ,r d
ti tkp z zj j  are values of 

probability density function (PDF) and joint PDF at pixel 
brightness ,r d

ti ttkz z Zj j . 
Then, in accordance with (3), the stochastic gradient 

of Shannon MI is determined by the expression: 

   
Q

,r r d
t tS S

St

H H 
 




α

Z

α

Z Z 
. (6) 

Tsallis MI [30] is determined as  

     
   

ˆ ˆ ˆ ,

ˆ ˆ(1 )

Q

,

r d r d
t t

r d
t

Tt T T T

T T T

H H H

q H H

   

 

Z Z Z Z

Z Z

 


 (7) 

where 

        1* *1*ˆ 1 1 T
T

Z

t t
q

tTH q p z zp
 



   j j
j

Z   , (8) 

 
    1 1

,

ˆ

1 ,1

,

T
T

i k Z

r d
t

r d

T

ti t
q

kz

H

p zq
 





  
j j

j j

Z Z


 (9) 
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are estimates of the Tsallis entropy of images r
tZ  and Zd 

and the joint entropy; qT is the order of Tsallis entropy. 
Accordingly, the stochastic gradient of the Tsallis 

MI (7) is 

     
 

Q

ˆ

ˆ ,

1

.

ˆ 1
T

r
t

r d
t

T d
Tt

T

H

H

H q


  


 






Z

Z Z

Z
α

α




 (10) 

Renyi MI [31] can be calculated as  

   
 

Q
,

ˆ ˆ

ˆ

r d
t

r d

R R

Rt

R t

H H

H




Z Z

Z Z



 , (11) 

where 
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2

ˆ 1 log R
R

Z

t t
q

R zH q p




   j
j

Z  , (12) 
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2

,

,ˆ log ,1 R
R

i k Z

r d dq
R
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t ti tkH q zp z


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   j
j j

jZ Z   (13) 

are Renyi entropy estimates; qR is the order of Renyi. 
Taking into account (11), the stochastic gradient of 

the Renyi MI can be calculated by the expression: 

   

    
 

 
2

Q
1

ˆ
ˆ ,

ˆ ˆ ˆ ,

ˆ ,
.

r
tr d

t

r d r d
t t t

r d
t

R
R

R R R

t

R

R

H
H

H H H

H












 

 

Z
Z Z

Z Z Z Z

Z Z

α

α




 



 (14) 

Thus, finding the stochastic gradients of the Shannon, 
Tsallis, and Renyi MI is reduced to determining the PDF 
and joint PDF estimates of images r

tZ  and Zd at each itera-
tion, as well as the derivatives of the entropies of the corre-
sponding MI with respect to the estimated parameters. 

2.2. Estimates of probability density functions 
of the reference and deformed images 

As already noted, when finding the numerical values 
of MI at each iteration of the procedure (2), it is required 
to estimate the single PDF and joint PDF of images r

tZ  
and Zd. At the same time, estimates of both PDF must be 
found from a local sample Zt, which has a small volume 
(units, tens of pixels), which leads to increased require-
ments for the accuracy of PDF approximation. PDF esti-
mates can be found either using the histogram method 
[27] or using the Parzen window method [32]. Studies 
show that the Parzen window method is more informative 
for the problem under consideration, which also assumes 
a simple software implementation.  

The idea of the method is that the PDF estimate pt(z) 
is found as a normalized superposition of elementary 
symmetric distributions w(z)|zjr, centered on the pixel 
brightness d

tzj , jtZ, that are in the local sample: 

   1
t

Z

t
z

p w zz



  j

j

, (15) 

where  is the local sample size (cardinality of the set Z). 
In particular, if the elementary distribution is Gaussi-

an, then  

   2

2

11
exp

22Z

d

GG

tz
w

z
z



   
   

 j
j

, (16) 

where 2
G  is the variance of the elementary distribution, 

which is chosen from some criterion and significantly af-
fects the quality of entropy estimates. Instead of a Gauss-
ian distribution, any other suitable differentiable function 
can be used, for example, the Cauchy PDF. However, the 
features of the Gaussian function simplify the subsequent 
analysis, therefore, in this study, it is chosen as an ele-
mentary distribution in the Parzen window method. 

2.3. Derivatives of the entropy of mutual information with 
respect to the estimated parameters 

To calculate the stochastic gradient of all MI types, it 
is necessary to find partial derivatives  ˆ r

tH αZ  and 
 ˆ , r

t
dH Z αZ  with respect to the estimated registra-

tion parameters of the single image entropy r
tZ  and joint 

entropy of images r
tZ  and Zd. This can be done either by 

numerical methods using finite differences [28], or, as in 
this work, analytical formulas can be obtained taking into 
account the accepted model of mutual spatial defor-
mations of images.   

There is the known approach to find analytical de-
pendencies of Shannon MI when representing an image 
model by a random field Z = {zj}. In this approach, find-
ing estimates of the Shannon entropy is based on the fact 
that it can be expressed as the mathematical expectation 
of the negative logarithm of the PDF [33]: 

 
1

2 2( ) ( ) log ( ) M log ( )S
z Z

H p z p z p


   
j

j jZ Z , 

where M[ꞏ] is the expectation operator. Estimates p(zj) for 
a local sample Z1Z with volume 1 are constructed using 
the Parzen window method. The mathematical expectation 
(– log2p(Z)) is estimated by the average value p(zj) of anoth-
er sample Z2 from the same random field Z, which can have 
a volume 2 that is generally different from 1. Then, as a 
calculated relation for entropy, we obtain:  

2 1

2
2 1

ˆ( ) ( )

1 1
log ( ) ,

k i

S S

G i k
z Z z Z

H H

w z z
 

 

 
     

 

Z Z

 (17) 

where zi is the brightness of the element zjZ1; zk is the 
brightness of the element zjZ2. Then the derivative of 
(17) is calculated. The usage of two samples (one for es-
timating the PDF and another for finding the average val-
ue of the logarithm of the PDF) leads to inefficient usage 
of the information contained in them.  

In this work, for the analytical determination of entro-
py derivatives, a different approach was used, in which 
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only one sample of images r
tZ  and Zd is used. As func-

tions of entropy for differentiation, expressions (4) and 
(5) were used for Shannon MI, (8) and (9) for Tsallis MI, 
and (12) and (13) for Renyi MI. Omitting intermediate 
calculations, we present the resulting expressions. 

With known Zt the partial derivatives for the Shannon 
entropy can be found by the expression: 

 
2

1
2

ˆ 1

log 1 ,

it t

t

r r
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r
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 
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α α
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 (18) 

where  r r r
i

r
i tk kp z z   ; r r

i
r
i kk z z   ; r

iz  and r
kz  are 

brightness of pixels t
r
tz Zj .  

Similar relationships can also be written for 
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where  w dd
k ki

d
t iz z   ; d d

i
d
i kk z z   ; d

iz  and d
kz  are 

brightness of pixels d
ttz Zj . 

The partial derivatives for the single and joint Tsallis 
entropy are determined by the expressions: 
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where qT is the order of Tsallis entropy. 
The partial derivatives for the single and joint Renyi 

entropies [3] correspond to the expressions 
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Note that i  k when summing in expressions (18)-
(23). In addition, the calculations can be reduced by 
summing over k from 1 to , and over i from k + 1 to .  

Let us take into account that in expressions (18)-(23) 
the derivatives r

ik α  depend on the accepted model of 
spatial deformations. Let's represent r

ik α  in the form 

   1 2

1 2

r r r
k

r r
i i k

r
ik ik j j

j j

z z z z       
  

      
j

α j α α α
. (24) 

In this case, since the dependence of the brightness 
r
iz  of pixels rr

ttz Zj on the basic coordinates j of the im-
age Zr. is not known a priori, the derivative 
 r

t kz z  j j  can only be estimated through finite dif-
ferences. For example, in the simplest case, assuming the 
image is two-dimensional j = (j1, j2)T, the derivative 

1
r
t jz j  at the node (j1 = n, j2 = m) of the pixel grid, as-

suming the usage of second-order interpolation and a unit 
grid step, can be estimated as  

1

2

1, 1,

1 2j n
j m

d
t n m n mz z
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
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







j . (25) 

The derivative j /  can be found analytically us-
ing the adopted model of mutual spatial deformations of 
images Zd and Zr. In particular, if a special case of the 
general affine model is used, the similarity model [3] is  
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 (26) 

The parameters  = (hj1, hj2, , )T of this model are 
shifts hj1 and hj2 along the basic image axes, rotation an-
gle  and scale factor . In this case we have 
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where  1 1 1 0
*
j j jh h h ;  2 2

*
2 0j j jh h h ; (hj1 0, hj2 0) are 

the coordinates of the rotation center. 
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Thus, all the necessary relations for calculating the 
stochastic gradient of the Shannon, Renyi and Tsallis MI 
for the algorithmic implementation of the procedure (2) 
for estimating the image registration parameters have 
been obtained. 

3. Experimental study of algorithms  
under noisy conditions 

On the base of the obtained expressions, relay stochas-
tic image registration algorithms were synthesized, which 
were tested on simulated and real images. The simulated 
images were formed using a wave model [34], the ad-
vantage of which is the isotropy of the obtained images, as 
well as the proximity of the brightness and correlation 
functions to Gaussian ones. The latter is important for ex-
perimental verification of analytical results, since such lim-
itations are often assumed when obtaining them. Satellite 
images of the optical range were used as real images. 

When conducting an experiment (1), a positive-
definite diagonal gain matrix with constant learning coef-
ficients was used: 

1

t
2

0 0 0 0.2 0 0 0

0 0 0 0 0.2 0 0
,

0 0 0 0 0 0.1 0

0 0 0 0 0 0 0.005

j

j








 




Λ  (28) 

where  is measured in degrees. The number of itera-
tions of algorithms is T = 100. The local sample Zt at each 
iteration is formed equally randomly. The local sample 
size  for all algorithms is 80 pixels. The sizes of samples 
Zt1 and Zt2, Zt1Zt2 = Zt are equal. To find the variance 2

G  
of an elementary Gaussian distribution, one of the well-
known approaches [33] is used, in which it is determined 
by several iterations through an estimate 2ˆ Z  of the vari-
ance of a local sample:  
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where d
tz  is the average value of  d

tzj . 
The objective of the experimental study was a com-

parative estimation of the effectiveness of algorithms de-
veloped on the basis of various types of MI in under 
noisy conditions. At the same time, in order to be able to 
analyze the accuracy of the estimates of the registration 
parameters generated by the algorithms, the deformed 
image was constructed from the reference one according 
to the specified deformation parameters and an independ-
ent centered Gaussian noise was additionally added to it. 
The range of the ratio q of image variance to noise vari-
ance was studied in the range from 5.5 to 0.5. 

The following indicators were used to compare the ef-
fectiveness of algorithms synthesized on the basis of dif-
ferent types of MI: noise resistance, error of the vector of 
estimates of deformation parameters and speed. The noise 

resistance of algorithms was defined as the proportion of 
evaluation failures for a given number of the algorithm 
implementations. Estimation failure here means the ab-
sence of convergence of estimates to the optimal value 
for a given number of iterations of the algorithm for at 
least one of the deformation parameters. The error was 
characterized by the variance of the error of estimates of 
each of the deformation parameters, as well as the Eu-
clidean mismatch distance [35], which integrally charac-
terizes the vector of parameter estimates. The implemen-
tation of the algorithms was estimated by the number of 
iterations until the convergence of the estimates of the 
registration parameters was achieved. The hypothesis of 
achieving parameter convergence to optimal values was 
considered confirmed if the variance and the average val-
ue of the parameter estimation error in the sliding win-
dow did not exceed the specified threshold values. 

An example of a simulated image is shown in Fig. 1a. 
Due to the specifics of its formation, its distinctive feature 
is the absence of relatively high-frequency spatial compo-
nents, for example, contours. The deformed image ob-
tained using a similarity model with parameters hx = – 3.4, 
hy = – 4.2,  = 5.1,  = 1.07 and also noisy with q = 1 is 
shown in Fig. 1b.  

a)       b)       

c)  d)  
Fig. 1. Example of original and noisy deformed simulated 

image and their brightness probability distributions 

The brightness values of the original and deformed 
images are shown respectively in Fig. 1c and Fig. 1d. 
Due to the linearity of the noise operation, the greater the 
noise, the closer the brightness distribution is to Gaussi-
an. However, it is worth noting that the distribution mode 
for the simulated image practically does not change. 

The dependence of the proportion of estimation fail-
ures on the signal-to-noise ratio for 30 algorithm imple-
mentations is shown in Fig. 2a. Here (as well as in Fig. 3, 
Fig. 4a, Fig. 6 and Fig. 7a) the green curve shows the re-
sults of the algorithm synthesized on the basis of Shan-
non MI, red – Tsallis MI and blue – Renyi MI. It can be 
seen that Tsallis MI has the least stability among the stud-
ied objective functions. For it the failure proportion tends 
to 100 % already at q = 4. The best stability is shown by 
the algorithm based on the Renyi MI, in which estimation 
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failures begin at q < 2. The algorithm based on Shannon 
MI is some better in this indicator, but significantly infe-
rior to the usage of Renyi MI. The variances of the error 
in estimating the deformation parameters is shown in 
Fig. 2b – 2d (Fig. 2b is the dependence of the variance of 
the error in estimating the shift along one of the coordi-
nate axes on q, Fig. 2c – in estimating the rotation angle, 
Fig. 2d – in estimating the scale factor), from which it can 
be seen that the smallest error in estimating all parameters 
is given by the algorithm based on the Renyi MI, and the 
largest is based on the Tsallis MI. At the same time, the 
loss in variance for estimates of all parameters is more 
than 1.5 times. The algorithm based on Shennon MI loses 
about 20 %. The vertical dotted line on the graphs means 
that the estimation failure with a further increase in noise 
changing. The vertical dotted line on the graphs means 
the estimation failure with a further increase in noise. 

a)  b)  

c)  d)  
Fig. 2. The proportion of estimation failures and the variance 
of parameter estimates for different types of MI for simulated 

image 

 
Fig. 3. The number of iterations of algorithms before the 

convergence of the registration parameter estimates  

The dependence of the number of algorithm iterations 
that necessary for the convergence of the estimates of the 
registration parameters on the signal-to-noise ratio is 
shown in Fig. 3. It can be seen that the difference in the re-
sults for the algorithms based on Shannon and Renyi MI 
does not exceed the experimental error. The algorithm 
based on Tsallis MI requires 1.3 – 1.5 times more iterations 
to achieve the convergence domain of the parameters. 

a)  b)  

c)  d)  
Fig. 4. The dependence of MI on the displacement for simulated 

image 

a)       b)      

c)  d)  
Fig. 5. Example of the original and noisy deformed real images  

and their brightness probability distributions  

The obtained results, reflecting a lower probability of 
estimation failures and a greater accuracy of estimates of 
the registration parameters of the algorithm based on the 
MI, are also confirmed by the analysis of the dependen-
cies of various types of MI on the displacement along one 
of the coordinate axes (Fig. 4a). The figure shows the 
curves normalized to the maximum for three types of MI, 
obtained on the base of the image of Fig. 1a. It can be seen 
that the decline rate of the numerical value of Renyi MI 
with increasing shift is less than that for Shannon and Tsal-
lis MI. This, in the conditions of geometric deformations of 
images and noise, provides a larger amount of information 
for the algorithm and, accordingly, better results.  

Examples of Shannon, Tsallis and Renyi MI curves with 
different signal-to-noise ratios are shown in Fig. 4b – Fig. 4d. 
Here (as well as in Fig. 7b) the curve 1 corresponds to the ra-
tio of 5.5, the curve 2 – to the ratio of 3, the curve 3 – to the 
ratio of 1. It can be seen that at the boundary of the shift 
range, the difference in values at q = 5.5 and q = 1 for Renyi 
is less than 1.1 times, whereas for Shannon MI is less than 
1.7 times, for Tsallis MI is less than 2.6 times. 
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An example of a real satellite image of the Volga 
River water area of the optical range is shown in Fig. 5a. 
In contrast to the simulated image of Fig. 1a, this image 
is more high-frequency, having many contour lines. The 
deformed and noisy image at q = 1 is shown in Fig. 5b. 
To compare the results, the deformation parameters, as 
well as the parameters of the algorithms, are selected the 
same as in the previous example. The brightness values 
of the original and deformed images are shown respec-
tively in Fig. 5c and Fig. 5d. At the same time, the 
brightness distribution of the real image is very different 
from the Gaussian one. The addition of noise significant-
ly changes the distribution, bringing it somewhat closer 
to normal, which also changes the mode of distribution. 

The graphs of estimation failures proportion are 
shown in Fig. 6a, and the dependences of the variance of 
the Euclidean mismatch distance of the estimation vector 
on the signal-to-noise ratio are shown in Fig. 6b. In gen-
eral, the obtained results confirm the conclusion about the 
greater efficiency of the algorithm on the basis of the Re-
nui MI. However, we note that in the real image, the sta-

bility of the visualis to additive noise is slightly higher 
than in the simulated one. In addition, in terms of estima-
tion failure proportion and in terms of the accuracy of the 
estimates, the usage of Shannon MI gives similar results. 
This can be explained by the fact that a higher-frequency 
image provides, on average, less information content of the 
local sample due to a smaller radius of correlation of the 
autocorrelation function. At the same time, in this case, 
with a given size of local sampling, the probabilities of 
changes in the estimates in procedure (1) in the direction of 
their improvement are close. However, for the Tsallis MI, 
this sample size is not enough to compensate for a larger 
decline in the MI with the same parameters of geometric 
mismatch of the linked images. This is confirmed by the 
graph of the dependence of the number of iterations of the 
algorithms to the convergence of the estimates of the bind-
ing parameters (Fig. 6c). It can be seen that the required 
number of iterations has increased by about half for all al-
gorithms, however, according to the previous algorithm 
based on the Tsallis MI, it is requared 1.5 times more itera-
tions to achieve convergence of parameters. 

a)  b)  c)  
Fig. 6. Parameters of algorithm efficiency for different types of MI for the real image 

a)  b)  
Fig. 7. The dependences of MI on the displacement  

for real images 

The normalized dependences of the studied MI on the 
displacement along one of the coordinate axes, similar to 
Fig. 4a, are shown in Fig. 7a. It can be seen that for the 
given real image they have a significantly larger amount 
of decline than for the simulated one, which indicates a 
smaller amount of information with the same amount of 
deformation. This leads to a lower probability of 
changing the estimates in procedure (2) in the direction of 
their improvement. As a result, the number of iterations 
required for convergence of algorithms increases. An 
example of Shannon MI curves with a different signal-to-
noise ratio is shown in Fig. 7b. The colors of the curves 
correspond to Fig. 4b. At the boundary of the specified 
displacement range, the difference for Shannon MI is 

approximately 1.2 times, for Tsallis MI is approximately 
1.3 times, for Renyi MI is approximately 1.1 times. Thus, 
this experiment also confirmed the high resistance of the 
Renya MI to additive noise. 

Conclusion 

The synthesized on the basis of the obtained analyti-
cal expressions for the stochastic gradient of mutual in-
formation of Shannon, Renyi and Tsallis, the recurrent 
algorithms for estimating the image registration parame-
ters showed high efficiency. In particular, when the sizes 
of the studied images were 500×500 pixels, the total 
number of pixels used in all estimation iterations did not 
exceed 5000, which is 2 % of their total number. When 
the size of the local sample increases, the accuracy and 
stability of the registration estimates generated by the al-
gorithms increase. 

Approbation of the algorithms on simulated and real 
images under noisy conditions showed that the algorithm 
based on the Tsallis MI showed less efficiency (both in 
the proportion of estimation failures and in the dispersion 
of the Euclidean mismatch distance). In general, when es-
timating the deformations of images with a brightness 
distribution close to Gaussian, there is less resistance to 
noise than in higher-frequency images with a complex 
distribution of pixel brightness. In particular, in the ex-



http://www.computeroptics.ru journal@computeroptics.ru 

116 Computer Optics, 2024, Vol. 48(1)   DOI: 10.18287/2412-6179-CO-1332 

amples on simulated images for the algorithm based on 
the Tsallis MI, 100 % of estimation failures were ob-
served at a signal-to-noise ratio of about 2, while on real 
satellite images, the failures with the same noise amount-
ed to about 30 %. Note also that, compared to algorithms 
based on Shannon and Renyi MI, the usage of Tsallis MI 
requires 1.3 – 1.4 times more iterations to achieve con-
vergence of registration estimates. 

On the basis of the conducted studies, it can be con-
cluded that under conditions of increased a priori uncer-
tainty, in particular, when registration of multispectral 
and multitemporal images, stochastic algorithms based on 
Renyi and Shannon MI can be recommended. At the 
same time, the algorithm based on the Rуnyi MI provides 
a slightly higher accuracy and convergence rate of the 
registration estimates, but it also implies a greater compu-
tational complexity.  

Acknowledgment 

The work was done by Leading Research Center "Na-
tional Center for Quantum Internet" of ITMO University 
supported by Russian Science Foundation (project No. 
24-21-00484) and the grant ”Fundamental and Applied 
Problems of Photonics” No. 621317 of ITMO University. 

References  

[1] Azam MA, Khan KB, Ahmad M, Mazzara M. Multimodal 
medical image registration and fusion for quality en-
hancement. Computers, Materials & Continua 2021; 68(1): 
821-840. DOI: 10.32604/cmc.2021.016131. 

[2] Yu G, Zhao S. A new feature descriptor for multimodal 
image registration using phase congruency. Sensors 2020; 
20(18): 5105. DOI: 10.3390/s20185105. 

[3] Gonzalez RC, Woods E. Digital image processing. Lon-
don: Pearson; 2018. 

[4] Maes F, Vandermeulen D, Suetens P. Medical image reg-
istration using mutual information. Proc IEEE 2003; 
91(10): 1699-1722. DOI: 10.1109/JPROC.2003.817864. 

[5] Fida AD, Gaidel AV, Demin NS, Ilyasova NY, Zamytskiy 
EA. Automated combination of optical coherence tomog-
raphy images and fundus images. Computer Optics 2021; 
45(5): 721-727. DOI: 10.18287/2412-6179-CO-892. 

[6] Dementiev VE, Magdeev RG, Tashlinskii AG. Detecting 
anomalies in temporal image sequences based on object iden-
tification by the stochastic gradient adaptation. 2021 Int Conf 
on Information Technology and Nanotechnology (ITNT) 
2021: 1-5. DOI: 10.1109/ITNT52450.2021.9649175. 

[7] Kamaev AN, Karmanov DA. Visual navigation of an au-
tonomous underwater vehicle based on the global search of 
image correspondences. Computer Optics 2018; 42(3): 
457-467. DOI: 10.18287/2412-6179-2018-42-3-457-467. 

[8] Frolov VN, Tupikov VA, Pavlova VA, Alexandrov VA. 
Informational image fusion methods in multichannel op-
toelectronic systems [In Russian]. Izvetiya Tul’skogo 
Gosudarstvennogo Universiteta. Technicheskie Nauki 
2016; 11(3): 95-104. 

[9] Zhang H, Xu R. Exploring the optimal integration levels 
between SAR and optical data for better urban land cover 
mapping in the Pearl River Delta. Int J Appl Earth Obs 
Geoinf 2018; 64: 87-95. DOI: 10.1016/j.jag.2017.08.013. 

[10] Wan L, Xiang Y, You H. A post-classification comparison 
method for SAR and optical images change detection. 

IEEE Geosci Remote Sens Lett 2019; 16(7): 1026-1030. 
DOI: 10.1109/LGRS.2019.2892432. 

[11] Magdeev RG, Tashlinskii AG. A comparative analysis of 
the efficiency of the stochastic gradient approach to the iden-
tification of objects in binary images. Pattern Recogn Image 
Anal 2014; 24(4): 535-541. DOI: 
10.1134/S1054661814040130. 

[12] Magdeev RG, Tashlinskii AG. Efficiency of object identi-
fication for binary images. Computer Optics 2019; 43(2): 
277-281. DOI: 10.18287/2412-6179-2019-43-2-277-281. 

[13] Marcos D, Hamid R, Tuia D. Geospatial correspondences 
for multimodal registration. Proc IEEE Conf on Computer 
Vision and Pattern Recognition 2016: 5091-5100. 

[14] Park H, Bland PH, Brock KK, Meyer CR. Adaptive regis-
tration using local information measures. Med Image Anal 
2004; 8(4): 465-473. DOI: 10.1016/j.media.2004.03.001. 

[15] Can A, Stewart C. A feature-based, robust, hierarchical al-
gorithm for registration palm of images of the curved hu-
man retina. IEEE Trans Pattern Anal Mach Intell 2002; 
24(3): 347-363. DOI: 10.1109/34.990136. 

[16] Maintz JBA, Viergever MA. A survey of medical image 
registration. Med Image Anal 1998; 2(1): 1-36. DOI: 
10.1016/s1361-8415(01)80026-8. 

[17] Wu J, Cui Zh, Sheng VS, Zhao P, Su D, Gong Sh. A com-
parative study of SIFT and its variants. Meas Sci Rev 
2013; 13(3): 122-131. DOI: 10.2478/msr-2013-0021. 

[18] Bay HV, Ess A, Tuytelaars T, Gool LV. SURF: Speeded 
up robust features. Comput Vis Image Underst 2008; 
110(3): 346-359. DOI: 10.1016/j.cviu.2007.09.014. 

[19] Alexanin AI, Morozov MA, Fomin EV. The problems of 
image superimposition with one-pixel accuracy [In Rus-
sian]. Sovremennye Problemy Distantsionnogo Zondi-
rovaniya Zemli iz Kosmosa 2019; 16(1): 9-16. DOI 
10.21046/2070-7401-2019-16-1-9-16.  

[20] Zlobin VK, Kolesnikov AN, Kostrov BV. Correlation-
extreme methods of combining aerospace images [In Rus-
sian]. Vestnik of Ryazan State Radio Engineering Univer-
sity 2011; 37(3): 12-17. 

[21] Tashlinskij A.G, Tikhonov VO. Errors analysis technique for 
pseudogradient measurement of multidimensional processes 
parameters [In Russian]. Izvestiya Vysshikh Uchebnykh 
Zavedenij: Radioelektronika 2001; 44(9): 75-80. 

[22] Tashlinskii AG, Safina GL, Kovalenko RO, Ibragimov RM. 
Usage of mutual information as similarity measures for sto-
chastic binding images. 2021 International Conference on In-
formation Technology and Nanotechnology (ITNT) 2021: 1-6. 
DOI: 10.1109/ITNT52450.2021.9649386. 

[23] Tashlinskii A, Ibragimov R, Safina G. Application of 
Renyi mutual information in stochastic referencing of mul-
tispectral and multi-temporal images. 2022 VIII Int Conf 
on Information Technology and Nanotechnology (ITNT) 
2022: 1-6. DOI: 10.1109/ITNT55410.2022.9848648. 

[24] Voronov SV, Tashlinskii AG. Efficiency analysis of in-
formation theoretic measures in image registration. Pattern 
Recogn Image Anal 2016; 26(3): 502-505. DOI: 
10.1134/S1054661816030226. 

[25] Tsypkin YaZ. Information theory of identification [In Rus-
sian]. Moscow: "Fizmatlit" Publisher; 1995.  

[26] Tashlinskii AG, Safina GL, Voronov SV. Pseudogradient 
optimization of objective function in estimation of geomet-
ric interframe image deformations. Pattern Recogn Image 
Anal 2012; 22(2): 386-392. DOI: 
10.1134/S1054661812020174. 

[27] Kovalenko RO, Tashlinskii AG. Optimization of the histo-
gram intervals number which approximate brightness proba-
bility distributions in stochastic image alignment based on in-



Stochastic algorithm synthesis for image registration by the criterion of maximum mutual information   Tashlinskii A.G., Safina G.L., Ibragimov R.M. 

Компьютерная оптика, 2024, том 48, №1   DOI: 10.18287/2412-6179-CO-1332 117 

formation similarity measures. 2022 24th Int Conf on Digital 
Signal Processing and its Applications (DSPA) 2022: 1-5. 
DOI: 10.1109/DSPA53304.2022.9805456. 

[28] Minkina GL, Samoilov MYu, Tashlinskii AG. Choice of the 
objective function for pseudogradient measurement of image 
parameters. Pattern Recogn Image Anal 2007; 17(1): 136-139. 

[29] Shannon CE, Weaver W. The mathematical theory of 
communication. Urbana: University of Illinois Press; 1998. 

[30] Cvejic N, Canagarajah CN, Bull DR. Image fusion metric 
based on mutual information and tsallis entropy. Electron 
Lett 2006; 42(11): 626-627. DOI: 10.1049/iel:20060693. 

[31] Renyi A. On measures of entropy and information. Proc 
Fourth Berkeley Symposium on Mathematical Statistics 
Probability 2006; 4.1: 547-561. 

[32] Mussa HY, Mitchell JBO, Afzalb AM. The Parzen 
Window method: In terms of two vectors and one ma-
trix. Pattern Recogn Lett 2015; 63: 30-35. DOI: 
10.1016/j.patrec.2015.06.002. 

[33] Viola P, Wells WM. Alignment by maximization of mutu-
al information. Proc IEEE Int Conf on Computer Vision 
1995: 16-23. DOI: 10.1109/ICCV.1995.466930. 

[34] Krasheninnikov VR. Fundamentals of the image processing 
theory [In Russian]. Ulyanovsk: ULSTU Publisher; 2003. 

[35] Tashlinskii, A.G. Optimal euclidean distance of estimates 
mismatch at stochastic gradient estimation of image inter-
frame geometric deformation parameters [In Russian]. In-
formatsionno-Izmeritelnyye i Upravlyayushchiye Sistemy 
2018; 11: 33-39. 

 

 

Authors’ information 

Alexander Grigorevich Tashlinskii, (b. 1954) graduated from Ulyanovsk Polytechnic Institute in 1977 (presently, 
Ulyanovsk State Technical University), majoring in Radio Engineering. Doctor of Technical Sciences, Professor, Head 
of Research Centre for Digital Signal and Image Processing «Signal» in Ulyanovsk State Technical University. Re-
search interests are computer optics, image processing, computer design, and digital photography. 
E-mail: tag@ulstu.ru 

 
Galina Leonidovna Safina, (b. 1983) graduated from Ulyanovsk State Technical University in 2005, majoring in 

Applied Mathematics. PhD in Technical Sciences, Docent, Head of the Department of Fundamental Education in 
branch of Moscow State University of Civil Engineering in Mytishchi, Associate Professor of the Department of Com-
puter Science and Applied Mathematics in Moscow State University of Civil Engineering. Research interests are image 
processing, programming, and stochastic gradient identification. E-mail: minkinag@mail.ru 

 
Radik Maratovich Ibragimov, (b. 1995) graduated from Ulyanovsk State Technical University in 2019, majoring 

in Radio Engineering. Master of Engineering and Technology, post-graduate student, junior researcher of the Depart-
ment of Radio Engineering in Ulyanovsk State Technical University. Research interests are digital image processing, 
programming, mathematical modeling, and stochastic gradient identification. 

E-mail: ibragimow.it@gmail.com 
 

 

Received May 04, 2023. The final version – August 11, 2023.  
 

 

 


