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Abstract 

The amount of ultrasound (US) breast exams continues to grow because of the wider en-
dorsement of breast cancer screening programs. When a solid lesion is found during the US the 
primary task is to decide if it requires a biopsy. Therefore, our goal was to develop a noninva-
sive US grayscale image analysis for benign and malignant solid breast lesion differentiation. 
We used a dataset consisting of 105 ultrasound images with 50 benign and 55 malignant non-
cystic lesions. Features were extracted from the source image, the image of the gradient module 
after applying the Sobel filter, and the image after the Laplace filter. Subsequently, eight gray-
level co-occurrence matrices (GLCM) were constructed for each lesion, and 13 Haralick textural 
features were calculated for each GLCM. Additionally, we computed the differences in feature 
values at different spatial shifts and the differences in feature values between the inner and outer 
areas of the lesion. The LASSO method was employed to determine the most significant features 
for classification. Finally, the lesion classification was carried out by various methods. The use 
of LASSO regression for feature selection enabled us to identify the most significant features for 
classification. Out of the 13 features selected by the LASSO method, four described the perile-
sional tissue, two represented the inner area of the lesion and five described the image of the 
gradient module. The final model achieved a sensitivity of 98%, specificity of 96%, and accuracy 
of 97%. Considering the perilesional area, Haralick feature differences, and the image of the 
gradient module can provide crucial parameters for accurate classification of US images. Fea-
tures with a low AUC index (less than 0.6 in our case) can also be important for improving the 
quality of classification. 
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Introduction 

Breast cancer (BC) represents an aggressive tumor 
characterized by high incidence and mortality rates. In 
2018, breast cancer accounted for 11.6 % of all malignan-
cies worldwide, sharing first place with lung cancer. At 
the same time, BC is responsible for 6.6 % of all cancer-
related deaths, ranking fourth after lung, gastric, and 
liver cancer [1]. 

Nowadays mammography is the only screening ap-
proach that has shown improved survival rates [2]. How-

ever, up to 10 % of mammographic exams reveal suspi-
cious findings, with varying malignancy rates ranging 
from 3 % to 94 % [3]. Biopsying all of these findings 
would not be a practical approach. As a result, ultrasound 
(US) is commonly used as a cost-effective and non-
invasive modality to determine which lesions require fur-
ther investigation.  

The US image of the breast mass is complex and can 
be divided into the hypoechoic central and iso- or hy-
perechoic peripheral components. The central component 
corresponds to the tumoral tissue, often containing a sig-
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nificant amount of fibrotic tissue. This hard tissue signifi-
cantly increases the stiffness of the central tumor compo-
nent and frequently causes acoustic shadowing due to US 
attenuation. Consequently, reliable quantitative analysis 
of the central component is challenging in most cases [4].  

On the other hand, the peripheral part of the tumor 
contains cancerous cells, as well as components of 
desmoplastic reaction and inflammatory infiltration, 
forming a perifocal rim of varying echogenicity and 
width. This area does not significantly attenuate the US, 
and therefore can be utilized for quantitative analysis. On 
the contrary, benign breast tumors usually have no such 
peripheral component, or it has less width and higher 
homogenicity [5]. Therefore it looks mandatory to esti-
mate the peripheral breast mass component when per-
forming classification tasks. 

Previous studies have examined the area external to 
the visible hypoechoic mass and showed that it may en-
hance classification reliability. However as an external 
area they used fixed distance from the visible border (e.g. 
5 mm [6], 40 % of the hypoechoic lesion size [7], or 20 
pixels [8]). At the same time, the area of the fixed width 
may incorrectly represent the perilesional tissue and in-
clude pixels unrelated to the mass. Moreover, certain 
works related to breast US image classification included 
cystic lesions which differ significantly from both benign 
and malignant solid lesions and can be visually distin-
guished [9].  

The classification of benign and malignant lesions in 
US images relies on the observation that their structures 
differ [10 – 12]. The gray-level co-occurrence matrix 
(GLCM) provides comprehensive information about pixel 
relationships in an image. GLCM parameters include the 
number of gray levels and the distance between compared 
pixels in the image. The GLCM is calculated in four di-
rections (0°, 45°, 90°, 135°) and serves as a source data 
for the Haralick textural features, commonly used for 
mass classification in US images [13 – 15]. Haralick pro-
posed 14 features for each GLCM, which is considered 
more reasonable than using morphological features be-
cause the latter can significantly overlap in benign and 
malignant lesions [3]. 

It has been suggested that incorporating additional 
texture features obtained by applying Sobel or Laplace 
filters can improve the quality of lesion classification, 
similar to machine learning methods utilizing image pre-
processing techniques like local binary patterns (LBP), 
histogram of oriented gradients (HOG), and GLCM [16]). 

Therefore, our study aimed to estimate Haralick tex-
tural features of the segmented perilesional area of the 
hypoechoic central mass component for the classification 
of benign and malignant lesions in US images. 

1. Materials and methods 

To test the proposed approach we used the data ob-
tained with the help of the following ultrasound systems: 
Medison SA8000SE, Siemens X150, Esaote MyLab C, 

and 7.5 – 12 MHz probes. These systems allowed us to 
obtain digital 8-bit ultrasound images of the breast with 
the detected lesions (see fig. 1a, c). The dataset included 
105 ultrasound images of cytologically and /or histologi-
cally proven benign, and 55 malignant non-cystic lesions 
(as displayed in tab. 1). 

Tab. 1. Characteristics of the lesions included into the analysis 

Feature 
Size 

Total ≤ 10 
mm 

11 – 20 
mm 

21 – 50 
mm 

> 50 
mm 

BIRADS category (n = 105) 

BIRADS 2 5 3 1 – 8 

BIRADS 3 15 7 5 2 29 

BIRADS 4 14 16 5 1 36 

BIRADS 5 13 11 7 1 32 

Malignant lesions (n = 55) 

Breast cancer 28 16 4 2 50 

Breast metastases – 2 1 – 3 

Lymphoma – 1 1 – 2 

Benign lesions (n = 50) 

Fibroadenoma 3 5 1 – 9 

Focal fibrosis 4 3 – – 7 

Intracystic 
papilloma 

1 1 – – 2 

Sclerosing 
adenosis 

7 2 – – 9 

Lipoma – 6 3 – 9 

Inflammatory 
infiltration 

– 3 1 1 5 

Gynecomastia – – 2 – 2 

Phylloid tumor – 1 1 – 2 

Intramammary 
lymph node 

1 4 – – 5 

On each image, the radiologist manually traced the 
contours of the inner hypoechoic area R1 (as shown in 
fig. 1b, d – digit 1) of the lesion and its outer area R2 (as 
depicted in fig. 1b, d – digit 2).  

To differentiate between malignant and benign le-
sions, we estimated both inner and outer parts of the le-
sion. Typically, the outer neighborhood of the lesion ex-
hibited distinctive textural features. 

Image features. The GLCM was employed to com-
pute the textural features of the ultrasound images. To 
construct the GLCM, the gray scale of ultrasound images 
was limited to 6 bits (the GLCM is NN, where N = 64). 
The GLCM were constructed for four directions α (α = 0°, 
45°, 90°, 135°) and for two distance values between the 
compared pixels in the GLCM matrix: d = 1 and d = 5 
(vertical or horizontal spatial shift 0.08 mm and 0.4 mm, 
respectively). Thus, a total of 8 matrices were determined 
for each region of interest (ROI). 

Features were determined from three images: the 
source image (fig. 2a, d), the image of the gradient mod-
ule after applying the Sobel filter (fig. 2b, e), and the im-
age after applying the Laplace filter (fig. 2c, f). 
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Fig. 1. (a) and (c) 8-bit ultrasound images of the breast 

carcinoma and benign solid lesion (fibroadenoma), 
respectively; (b) and (d) traced boundaries of the internal (digit 

1) and external (digit 2) parts of the lesion 

The Sobel filter was used to approximate the bright-
ness gradient at each point of the image. This filter in-
volved convolving two 33 kernels with the original im-
age to calculate derivative approximations: one for hori-
zontal changes and another for vertical changes. If A rep-
resents the matrix of the source image, and Gx and Gy are 
two images that at each point contain approximations of 
the vertical and horizontal derivatives, respectively, then 
the operation can be defined as: 

1 0 1 1 2 1

2 0 2 * 0 0 0 * ,

1 0 1 1 2 1
x yandG A G A

   
        
         

 (1) 

where * – convolution operation. 
An approximation for the modulus of the gradient G 

(fig. 2b, e) was obtained by combining of these derivatives: 

2 2 .x yG G G   (2) 

The Laplace filter approximates the Laplacian of the 
image brightness function at each point and is given by 
the kernel: 

2

1 1 1

1 8 1 .

1 1 1
xyD

 
   
 
 

 (3) 

The result of the filtering is the convolution of this 
kernel with the source image A (fig. 2c, f): 

2 * .xyL D A  (4) 

For each ultrasound image we obtained three images: 
A, G and L. Two ROI were selected on each of these im-
ages: the inner region R1 of the lesion and the outer re-
gion R2 of the lesion. 

As mentioned above, eight GLCM were constructed 
for each ROI, and 13 Haralick textural features were de-
termined for each GLCM. Therefore a total of 
32813 = 624 features were obtained for the one ultra-
sound image. 

 
Fig. 2. (а) and (d) source images of the breast carcinoma 

and benign solid lesion (based on the images showed on fig. 1a 
and 1c, respectively); (b) and (e) images of the gradient 

modulus after the Sobel filter, respectively; (c) and (f) images 
after the Laplace filter, respectively 

The paper tested the assumption that not only the fea-
tures themselves are important for lesion classification, but 
also the differences between the features at different spatial 
shift values d, as well as the differences in feature values 
between the inner and outer areas of the lesion. 

Let V(A, G, L, R1, d1) is the Haralick feature vector of 
four GLCM (0°, 45°, 90° and 135°) matrices constructed 
with d = 1 for the inner area R1 of three images A, G and L 
(totally 4133 = 156 features). Similarly, let V (A, G, L, 
R2, d5) be the Haralick feature vector of four GLCM ma-
trices constructed with d = 5 for the outer area R2 of three 
images A, G and L. Additional features considered were 
the difference in feature values: 

V (A,G,L,R1,d15) = V(A,G,L,R1,d1) – V(A,G,L,R1,d5)  
V(A,G,L,R2,d15) = V(A,G,L,R2,d1) – V(A,G,L,R2,d5)  (5) 
V(A,G,L,R12,d15) = V(A,G,L,R1,d15) – V(A,G,L,R2,d15).  

Two additional features were the average distance be-
tween the contours and the standard deviation distance 
between the contours. The total number of the features 
considered for the classification was 
624 + 3  156 + 2 = 1094 features. 

Various machine learning methods are commonly 
used for image classification using textural features, in-
cluding ensemble classifier AdaBoost [17 – 18], support 
vector machine [16, 19 – 20], artificial neural network 
[19], random forest classifier [19, 21], naive Bayes classi-
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fier [16, 19], K – nearest neighbor [16, 19], and logistic 
regression [22 – 23].  

The quality of the image feature classification was an-
alyzed using the following methods: linear discriminant 
analysis, Gaussian naive Bayes, linear supported vector 
machine (SVM), nearest neighbor method, bagged trees. 
We evaluated the Accuracy (Ac), Sensitivity (Se), and 
Specificity (Sp) for each method when classifying benign 
and malignant lesions. 

2. Results 

K-fold cross-validation was used to estimate the clas-
sification quality of various machine learning models. 
This method involves randomly dividing the data into k 
non-overlapping blocks of approximately equal size. 
Each block is then treated as a validation set, while the 
remaining k-1 blocks are used as a training set. The mod-
el was trained on k-1 blocks and evaluated on the valida-
tion block. This process is repeated k times, resulting in k 
scores. The average of these scores represents the final 
score of the model. 

In this study, the classification quality was assessed 
for each model using k = 3, 4, and 5, and the results were 
averaged. 

Tab. 2 shows the classification results of the feature 
vectors V (A, G, L, R1, d1) (where features were deter-
mined for the inner area R1, and GLCM was constructed 
with d = 1) using the different models: model 1 – linear 
discriminant analysis, model 2 – naive Bayes, model 3 – 
SVM, model 4 – nearest neighbor method, model 5 – 
bagged trees. The table displays the classification quality 
values for various k values, the mean value, and the esti-
mated standard deviation (SD). 

Tab. 2. Classification results for V (A, G, L, R1, d1). Note: the best 
values of accuracy, sensitivity and specificity are given in bold 

Model 
Classification quality, % 

Parameter k = 3 k = 4 k = 5 Mean SD 

1 
Accuracy 73 69 75 72 1.4 
Sensitivity 71 60 73 68 3.3 
Specificity 76 78 78 77 0.5 

2 
Accuracy 69 70 68 69 0.5 
Sensitivity 71 69 62 67 2.2 
Specificity 66 70 76 71 2.4 

3 
Accuracy 77 78 80 78 0.7 
Sensitivity 75 75 80 77 1.4 
Specificity 80 82 80 81 0.5 

4 
Accuracy 64 67 72 68 1.9 
Sensitivity 67 73 76 72 2.2 
Specificity 60 60 67 62 1.9 

5 
Accuracy 74 72 77 74 1.2 
Sensitivity 82 71 80 78 2.8 
Specificity 66 74 73 71 2.1 

Model 3 (linear SVM) achieves the highest average 
accuracy and specificity, while model 5 exhibits the high-
est sensitivity. However, it's important to note that model 
5 also has a significantly higher standard deviation. 

Tab. 3 shows the classification results for the follow-
ing feature vectors of the ultrasound images: 1) V(A, G, L, 
R1, d5), 2) V(A, G, L, R2, d1), 3) V(A, G, L, R2, d5), 4) V(A, 
G, L, R1, d15), 5) V(A, G, L, R2, d15), 6) V(A, G, L, R12, 
d15). The average classification quality results for k = 3, 4, 
and 5 are given for each feature vector. 

By comparing the average classification quality re-
sults for the feature vectors V(A, G, L, R1, d1) and V(A, G, 
L, R1, d5), as well as V(A, G, L, R2, d1) and V(A, G, L, R2, 
d5), we observed that using textural features obtained 
with d = 5 (spatial shift of 0.4 mm) yields higher sensitivi-
ty and specificity compared to d = 1 (spatial shift of 0.08 
mm). Additionally, the textural features extracted from 
the outer area R2 of the lesion exhibit higher sensitivity 
and specificity values than those from the inner area R1 of 
the lesion. Notably, the best classification quality was 
achieved when utilizing the differences between textural 
features, specifically feature vectors V(A, G, L, R1, d15), 
V(A, G, L, R2, d15), V(A, G, L, R12, d15). Model 3 (the line-
ar SVM model) consistently provided the highest accura-
cy and specificity among all considered feature vectors. 

The vector V(A, G, L, R12, d15), which considers the dif-
ferences in feature values between the outer and inner are-
as, yielded the highest sensitivity value in classifying the 
ultrasound images. It's worth mentioning that besides mod-
el 3, models 2 and 4 also exhibit high-quality classification 
indicators for the feature vector V(A, G, L, R12, d15). 

Previously we demonstrated that the LASSO feature 
selection method can enhance the quality of the lesion 
classification in US images [24].  

The LASSO is commonly used when dealing with da-
tasets containing numerous variables to exclude some of 
them and understand how the important features (i.e., 
those selected by the LASSO as significant) impact the 
model's performance. 

The mathematical equation of the LASSO model can 
be defined as follows: 

2

1 1

arg min( ( ) ),
n m

i j ij
i j

y x
 

     
 

where xij is the value of the independent variable (1094 
considered features for 105 US images), yi is the value of 
the dependent variable (–1 for benign and 1 for malignant 
lesion), λ is the penalty parameter (λ ≥ 0), βj is the regres-
sion coefficient, n = 105, m = 1094 [25]. 

In this case, a compromise is achieved between the 
regression error and the dimension of the used feature 
space. It is expressed as the sum of the absolute values of 
the coefficients |β|. During the minimization process, 
some coefficients become zero, which determines the se-
lection of informative features. 

Since the best results were obtained using the feature 
difference vectors, a feature vector was created that in-
cluded all the features of the vectors V(A, G, L, R1, d15), 
V(A, G, L, R2, d15), and V(A, G, L, R12, d15). Additionally, 
two more features were added: the average distance be-
tween the contours and the SD distance between the con-
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tours. The total number of features analyzed using the 
LASSO method was 3156 +2 = 470 features. 

Tab. 3. Classification results for the six feature vectors. Note: 
the highest accuracy, sensitivity and specificity values for the 

assessed classification methods are highlighted in bold 

Model 

Classification quality, % 

Parameter 

Feature vector 

V
(A

, G
, L, R

1 , d
5 ) 

V
(A

, G
, L, R

2 , d
1 ) 

V
(A

, G
, L, R

2 , d
5 ) 

V
(A

, G
, L, R

1 , d
15 ) 

V
(A

, G
, L, R

2 , d
15 ) 

V
(A

, G
, L, R

12 , d
15 ) 

1 
Accuracy 76 75 78 82 84 80 
Sensitivity 77 77 82 85 85 85 
Specificity 75 73 73 79 82 75 

2 
Accuracy 70 75 79 85 83 92 
Sensitivity 78 76 85 86 91 94 
Specificity 62 73 71 83 73 91 

3 
Accuracy 83 76 90 92 92 92 
Sensitivity 83 84 93 94 94 96 
Specificity 82 68 86 90 91 89 

4 
Accuracy 66 68 83 85 85 91 
Sensitivity 74 73 87 88 88 94 
Specificity 56 63 79 82 81 87 

5 
Accuracy 72 73 80 86 88 86 
Sensitivity 78 80 82 88 87 87 
Specificity 65 65 77 82 89 85 

The LASSO method identified 14 significant features 
as follows: 

● Two features were selected from the feature vec-
tor of the inner area V(A, G, L, R1, d15) for the image of 
the gradient modulus G (fig. 2b, e) are the total vari-
ance for α = 0° (feature 1) and the total mean for 
α = 135° (feature 2). 

● Four features from the feature vector V(A, G, L, R2, 
d15) of the outer area. These features include two textural 
features of the source image A: Haralick correlation for 
α = 90° (feature 3) and total entropy for α = 135° (feature 
4). Additionally, two textural features of the image gradi-
ent module G were selected: Haralick correlation and the 
first information measure of correlation for α = 0° (fea-
tures 5 and 6, respectively). 

● Seven features were obtained from the feature dif-
ference vector of the inner and outer areas V(A, G, L, R12, 
d15). These features include six textural features of the 
source image A: total entropy and second information 
measure of correlation for α = 0°; total entropy and 
Haralick correlation for α = 45°; and the first information 
measure of correlation for α = 90° and α = 135° (features 
7, 8, 9, 10, 11, 12, respectively). Furthermore, one textur-
al feature was selected for the image of the gradient mod-
ulus G: the second information measure of correlation for 
α = 0° (feature 13). 

If P (i, j) is an element of the GLCM, then the selected 
textural features of Haralick can be represented by the 
following equations: 

- Haralick correlation: 

1 1
1

( ) ( , )

,

N N

i j
i j

i j

i j P i j

f  

  


 


 (6) 
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j
j i
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 

      
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 

 
 

2 2 2 2
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 

        

- total mean: 

2 2

2
0

( ),
N

x y
k

f k P k





   (7) 

where 

1 1

( ) ( , ), , 2,3, ,2 2;
N N

x y
j i

P k P i j k i j k N
 

       

- total variance: 

2 2
2

3 2
0

( ) ( );
N

x y
k

f k f P k





    (8) 

- total entropy: 

2 2

4
0

( ) log( ( ));
N

x y x y
k

f P k P k


 


    (9) 

- first information measure of correlation: 

5
1

,
max( , )

HXY HXY
f

HX HY


  (10) 

where 

1 1

1 1

1 1

log , log ,

( , ) log( ( , )),

1 ( , ) log( );

N N

i i j j
i j
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i j
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- second information measure of correlation: 

6 1 exp( 2( 2 )) ,f HXY HXY     (11) 

where 

1 1

2 ( ) log( ).
N N

i j i j
i j

HXY p p p p
 

      

● Additionally, the standard deviation of the distance 
between the outer and inner contours was determined as a 
significant feature (feature 14). 

It should be noted that the features corresponding to 
the image after the Laplace filter (fig. 2c, f) were not 
identified as significant.  
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The classification results of the 14 feature vectors se-
lected by the LASSO method are presented in tab. 4. The 
table displays the classification performance at various 
values of k, along with the average values. It can be ob-
served that for these 14 features, the model 3 (SVM) 
achieved the best classification results: accuracy of 97 %, 
sensitivity of 98 %, and specificity of 95 %. The applica-
tion of the LASSO method for ultrasound image feature 
selection has significantly enhanced the quality of the 
classification. 

Tab. 4. Classification results for the LASSO feature vectors. 
Note: the highest accuracy, sensitivity and specificity values for 

the assessed classification methods are highlighted in bold 

Model 
Classification quality, % 

Parameter k = 3 k = 4 k = 5 Mean 

1 
Accuracy 92 91 92 92 
Sensitivity 89 92 91 91 
Specificity 95 88 93 92 

2 
Accuracy 91 93 93 92 
Sensitivity 89 91 92 91 
Specificity 93 95 93 94 

3 
Accuracy 99 96 97 97 
Sensitivity 98 98 98 98 
Specificity 100 93 95 96 

4 
Accuracy 98 93 94 95 
Sensitivity 96 96 92 95 
Specificity 100 88 95 94 

5 
Accuracy 84 90 85 86 
Sensitivity 89 92 83 88 
Specificity 79 86 88 84 

Fig. 3 shows the normalized distributions of all fea-
tures for benign and malignant breast lesions. 

 
Fig. 3. The normalized distributions of all features 

Fig. 3 shows that the values of the individual features 
of benign lesions overlap with those of malignant lesions. 
In contrast to the findings in a previous work [13], there 
are no features that exhibit a clear separation between the 
two classes. 

Tab. 5 shows the absolute values of the correlation 
coefficients r for the selected 14 features. It can be ob-
served that most of the features exhibit weak correlations. 
Only in four cases out of 91 correlation coefficients 
(highlighted in gray cells) the absolute value of the corre-
lation coefficient is greater than 0.7 (excluding the corre-
lation of a feature with itself). Additionally, 74 correla-
tion coefficients have values less than 0.5. 

Tab. 5. Values of correlation coefficients between the features. Note: the highest correlation coefficients are highlighted in gray 

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 1 0.32 0.13 0.22 0.17 0.53 0.36 0.36 0.52 0.5 0.17 0.08 0.3 0.31 
2  1 0.6 0.2 0.1 0.44 0.55 0.5 0.45 0.58 0.04 0.13 0.39 0.52 
3   1 0.16 0.21 0.24 0.23 0.33 0.34 0.32 0.04 0.02 0.22 0.28 
4    1 0.01 0.3 0.11 0.41 0.22 0.12 0.04 0 0.53 0.19 
5     1 0.08 0.15 0 0.33 0.24 0.09 0.11 0.03 0.07 
6      1 0.46 0.46 0.4 0.6 0.1 0.03 0.37 0.64 
7       1 0.52 0.56 0.85 0.03 0.04 0.31 0.41 
8        1 0.25 0.5 0.26 0.27 0.78 0.28 
9         1 0.72 0.05 0.04 0.23 0.3 

10          1 0.11 0.07 0.28 0.56 
11           1 0.9 0.37 0.36 
12            1 0.43 0.28 
13             1 0.13 
14              1 

AUC 0.82 0.84 0.79 0.74 0.55 0.86 0.83 0.84 0.75 0.86 0.53 0.52 0.80 0.83 

P value 

4.1E
 –

 9 

4.3E
 –

 9 

1.2E
 –

 5 

2.4E
 –

 6 

0.12 

3.2E
 –

 11 

8.7E
 –

 09 

4.1E
 –

 10 

5.7E
 –

 06 

9.9E
 –

 11 

0.0092 

0.028 

2.3E
 –

 08 

6.8E
 –

 10 

 

The statistical significance of the differences in aver-
age values between benign and malignant lesions for each 
feature was evaluated using Student's t-test (last row in 
tab. 5) [22]. The quality of classification when utilizing 
individual features was assessed using the AUC indicator 
(area under the ROC curve) (penultimate row in tab. 5). 

Features 5, 11, and 12 demonstrate the lowest AUC 
value (close to 0.5) and the highest P value. However, 

excluding these features from the set of features for clas-
sification leads to a deterioration in classification results. 
Specifically, the specificity of model 3 decreases from 
95 % to 91 % for k = 5. 

3. Discussion 

For our experiments, we decided to create our own 
image dataset. The reason for this choice is that open-
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source datasets often include images with a gray-level 
histogram shift towards the brighter end. This type of dis-
tortion can hinder the assessment of low-intensity gray 
levels. It is important to note that this issue stems from 
the diverse image presets available on different ultra-
sound machines. To ensure unbiased representation of 
gray levels and enable future processing of the images, it 
was necessary to carefully select images with accurate 
gray level representations. 

It is indeed true that directed image pre-processing 
techniques can enhance the classification of breast lesions 
by highlighting relevant features [26]. In the analysis of 
image structure, filters such as Sobel and Laplace are 
commonly used to accentuate the borders of brightness 
differences, making object contours more distinct. There-
fore, we propose that applying Sobel or Laplace filtering 
in combination with textural features can improve the 
quality of breast lesion classifications. 

What concerns the features, it is well-known that the 
morphological ones are insensitive for breast lesion clas-
sification. As an alternative approach, we focused on tex-
tural features extracted from the key outer image area 
[22, 27]. Haralick textural features have been widely used 
in classifying breast ultrasound images in several studies 
[6, 13, 28]. We utilized the first 13 Haralick features, ex-
cluding the feature that requires eigenvalue calculations 
from the GLCM. 

Our results indicate that both the individual features 
themselves and their differences calculated under differ-
ent conditions play a significant role in classification. 
Comparing feature differences at various spatial distance 
d values yielded better classification performance than 
using fixed d values. 

In our study, we demonstrated that, in line with the the-
oretical concept and some previous works [6, 29], the perile-
sional area has a significant importance for solid breast le-
sion classification. In our experiment, out of 13 features se-
lected by the LASSO method, four ones described the per-
ilesional tissue and only two represented the inner area of the 
lesion. Moreover, a majority of the selected features charac-
terized the difference between the inner and outer areas of 
the lesion. 

Another crucial aspect is the selection of the lesion 
region to be included in the processing. It is well-known 
that the upper 120° sector of the lesion is relatively free 
from US artifacts. On the other hand, the side and lower 
sectors often contain numerous unpredictable artifacts 
that may potentially diminish the quality of classification 
[30]. Taking this into consideration, we solely utilized the 
upper sector of the lesion for feature calculation in order 
to improve the classification accuracy. 

Besides the textural features of the source image we 
also incorporated the textural features of the brightness 
gradient module image. Out of the 13 textural features se-
lected by the LASSO method, eight represent the source 
US image and five describe the image of the gradient 
module. This highlights the importance of analyzing not 

only the original US images but also the results of their 
filtering for effective lesion classification. 

It should also be noted that the three of the selected 
features have AUC values below 0.6, which typically 
suggests limited utility for classification purposes. How-
ever, in our experiments these features still influenced the 
classification quality, possibly due to the inclusion of 
non-standard images in our training set. 

Recently, deep learning has gained popularity in bio-
medical image analysis [31 – 32]. Unlike traditional ma-
chine learning methods, deep learning approaches are in-
dependent of the feature extraction step. Prior to the advent 
of deep learning, the feature extraction was performed 
manually and required domain experts knowledge. In con-
trast, deep learning relies on neural networks that automat-
ically detect effective feature representations through the 
nonlinear transformation of primitive data features, such as 
word vectors and picture pixels [33]. 

However, deep neural networks require an extensive 
set of the previously labeled and specially prepared digit-
ized data for training, which can be a problem in medical 
applications. Moreover, the training of the deep learning 
models from scratch requires tens of thousands of images 
to avoid overfitting.  

Using data augmentation methods such as MixUp, the 
Mosaic method or spatial transformation of source imag-
es (flipping, rotation, padding) [34 – 36] allows to in-
crease the number of images significantly. However, the 
resulting dataset is still not ideal for training deep learn-
ing models from scratch. 

Simultaneously, merging of several public US data-
bases can also be challenging due to the lack of stand-
ardization among them. 

Often, to address the issue of overfitting, transfer 
learning methods are employed. These methods utilize 
pre-trained weights obtained from large open datasets 
such as PASCAL VOC, ImageNet, MS COCO, and oth-
ers [37 – 39]. In transfer learning the last few layers of the 
network are usually replaced with new ones and initial-
ized with random weights. The remaining layers can ei-
ther be frozen (i.e. unmodifiable) or left learnable. How-
ever, since pretrained weights are usually trained on non-
medical data like cars, buses, bicycles etc., it is necessary 
to adopt an appropriate methodology for transfer learning 
or domain adaptation. Furthermore, the presence of non-
standard medical cases, which are often encountered in 
clinical practice, can also impact the performance of deep 
learning networks. Therefore, a comprehensive evalua-
tion of deep learning approaches for medical purposes re-
quires a unified database consisting of tens of thousands 
of images annotated by specialists. 

Conclusions 

In the classification of breast lesion ultrasound imag-
es, the differences in features between the internal and 
external lesion areas are more significant than those with-
in the lesion itself. Given the wide range of shapes and 
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structures observed in breast lesions, features with an 
AUC parameter close to 0.5 should not be automatically 
excluded from the analysis. These features can contribute 
to improving the classification accuracy, especially for 
rare lesion types. Furthermore, incorporating filtered ver-
sions of the images, such as applying Sobel and Laplace 
filters, can enhance the classification quality, emphasiz-
ing the importance of considering both the original and 
processed images. 
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