
http://www.computeroptics.ru journal@computeroptics.ru 

242 Computer Optics, 2024, Vol. 48(2)   DOI: 10.18287/2412-6179-CO-1343 

Comparative analysis of neural network models performance 
 on low-power devices for a real-time object detection task  

A. Zagitov 1, E. Chebotareva 1, A. Toschev 1, E. Magid 1,2 
1 Institute of Information Technology and Intelligent Systems, Kazan Federal University,  

420008, Kazan, Russian Federation, Kremlevskaya St. 35 
2 School of Electronic Engineering, Tikhonov Moscow Institute of Electronics and Mathematics, HSE University,  

123592, Moscow, Russian Federation, Tallinskaya street 34 

Abstract 

A computer vision based real-time object detection on low-power devices is economically 
attractive, yet a technically challenging task. The paper presents results of benchmarks on popu-
lar deep neural network models, which are often used for this task. The results of experiments 
provide insights into trade-offs between accuracy, speed, and computational efficiency of Mo-
bileNetV2 SSD, CenterNet MobileNetV2 FPN, EfficientDet, YoloV5, YoloV7, YoloV7 Tiny 
and YoloV8 neural network models on Raspberry Pi 4B, Raspberry Pi 3B and NVIDIA Jetson 
Nano with TensorFlow Lite. We fine-tuned the models on our custom dataset prior to bench-
marking and used post-training quantization (PTQ) and quantization-aware training (QAT) to 
optimize the models’ size and speed. The experiments demonstrated that an appropriate algorithm 
selection depends on task requirements. We recommend EfficientDet Lite 512×512 quantized or 
YoloV7 Tiny for tasks that require around 2 FPS, EfficientDet Lite 320×320 quantized or SSD 
Mobilenet V2 320×320 for tasks with over 10 FPS, and EfficientDet Lite 320×320 or 
YoloV5 320×320 with QAT for tasks with intermediate FPS requirements. 

Keywords: computer vision, image analysis, object detection, deep learning, benchmark-
ing, optimization techniques, edge devices. 

Citation: Zagitov A, Chebotareva E, Toschev A, Magid E. Comparative analysis of neural network 
models performance on low-power devices for a real-time object detection task. Computer Optics 2024; 
48 (2): 242-252. DOI: 10.18287/2412-6179-CO-1343. 

Introduction 

Visual sensors based machine vision is one of key 
technologies of the Industry 4.0 paradigm [1]. In particu-
lar, object detection with mono and stereo cameras is of-
ten used in modern industrial robotic systems for orienta-
tion in space [2] and interaction with surrounding objects 
[3]. Objects to be detected by machine vision systems 
could have different shapes, sizes and colors, making it 
difficult to detect and classify them accurately. Target ob-
jects may be partially hidden or not fully visible, or have 
different shapes in perspective depending on their posi-
tion. Furthermore, environmental factors such as lighting 
conditions can further complicate a detection process. 

For these reasons, convolutional neural network 
(CNN) based object detection methods, which are a type 
of deep neural network, have gained a particular populari-
ty in recent years due to their efficiency over traditional 
methods [4]. However, a high computational power re-
quired for most real-time object detection methods in-
volving neural networks can be a limiting factor for their 
use on low-power devices [5]. In many cases, a choice of 
a particular solution method is influenced by low re-
source requirements while still maintaining an acceptable 
level of accuracy in a machine vision system. 

Yet, despite a demanding nature of deep learning al-
gorithms, there are numerous techniques that can enhance 
their performance. One such method is to employ models 
specifically crafted for mobile computing, such as the re-

nowned MobileNet [6]. Additionally, applying frame-
works that optimize a device resource utilization (e.g., 
Tensorflow Lite [7], ncnn [8], or MNN [9]) could signifi-
cantly boost algorithms’ efficiency. 

This paper compares a number of the most popular 
single-stage neural network models designed for object 
detection that are suitable for use on low-performance re-
al-time devices. We run benchmarks using Raspberry Pi 
4B, Raspberry Pi 3B, and NVIDIA Jetson Nano on a se-
lection of models that were fine-tuned for our dataset. 
Different model sizes were examined and optimization 
techniques were used to speed up an inference process. 
We believe that our experimental results and their com-
parative analysis provide useful insights into trade-offs 
between the accuracy, speed, and computational efficien-
cy of these models. 

1. Related work  

Machine vision with CNNs has been extensively re-
searched and applied to a wide range of tasks. In robotics, 
this technology has proven to be a crucial component in 
navigation, manipulation, and perception tasks. For ex-
ample, Myrzin et al. [10] developed a human detection 
framework for Servosila Engineer rescue robot camera 
using Rotation-Invariant Histogram of Oriented Gradients 
(RIHOG) features along with binarized normed gradients 
(BING) pre-processing and skin segmentation steps. In a 
related study, Buyval et al. [11] used CNN filtering to ex-
clude dynamic objects in the process of visual based self-



Comparative analysis of neural network models performance on low-power devices…  Zagitov A. et al. 

Computer Optics, 2024, Vol. 48(2)   DOI: 10.18287/2412-6179-CO-1343 243 

localization for unmanned aerial vehicles (UAVs). 
Among the most common tasks in robotics that utilize a 
machine vision, an object detection stands out. CNNs 
have been proven to be highly effective for this task, with 
numerous architectures and techniques being proposed 
over the past years. 

One of the first neural networks used to detect objects 
was the Region-Based CNN (R-CNN) [12]. The algo-
rithm operated in two stages: the first stage utilized a se-
lective search method to identify regions in an image that 
may contain an object, while the second stage employed a 
CNN and SVM to classify these regions and linear re-
gression to refine their boundaries. On the other hand, the 
Single-Shot MultiBox Detector (SSD) [13] proposed by 
Wei Liu et al. operated with a single pass over an image 
to identify multiple objects and generate corresponding 
bounding boxes. While this approach resulted in a lower 
accuracy compared to two-stage detectors, it offered a 
faster detection speed and became a preferred choice for 
low-power devices. 

In the original SSD paper, the authors used VGG-16 
as a feature extractor. Later, Howard et al. introduced a 
set of mobile and embedded image classification models 
called MobileNets [6]. These models are based on an op-
timized architecture that uses depth-separated convolu-
tions to create lightweight deep neural networks. Huang 
et al. [14] demonstrated that combining SSD with Mo-
bileNet as a feature extractor could achieve a similar ac-
curacy to VGG-16 on ImageNet with only 1/30 of the 
computational cost and model size. This led to the Mo-
bileNet-SSD model becoming a highly researched topic with 
numerous applications for resource-constrained tasks. For 
example, in [15], MobileNet-SSD was utilized and com-
pared against several other models in a surface defect detec-
tion, achieving not only the highest correct detection rate of 
95 % but also the lowest detection time per image on GPU. 
Later, it was implemented and verified in an oil chili filling 
production line in Guizhou, China. 

The work on MobileNet was continued by Sandler et 
al. [16]. Their proposed MobileNetV2 model greatly en-
hanced computer vision applications on mobile platforms. 
By optimizing the architecture of MobileNetV1 and add-
ing linear bottlenecks between layers along with short-cut 
connections between them, the authors were able to in-
crease the inference speed by almost 30 % on classifica-
tion tasks while maintaining the same level of accuracy. 
In addition, the SSDLite architecture described in their 
paper enabled the same speedup to be achieved for object 
detection tasks.  

MobileNetV2 with SSD has been widely used in a va-
riety of computer vision tasks, including expression 
recognition and surveillance systems. In [17] Zhang et al. 
applied MobileNetV2-SSD for expression recognition on 
Nao robot equipped with ATOM Z530 1.6 GHz CPU and 
1 GB RAM, and was able to achieve real-time perfor-
mance with 68.97 % accuracy on FER2013 dataset and 
89.2 % accuracy on CK+ dataset. Ahmed et al. used the 

MobileNetV2-SSD model in a real-time crowd surveil-
lance system [18]. They sent video sequences from IP 
cameras to a remote server over the Internet and used a 
deep learning model. Their results showed a mean aver-
age precision and counting accuracy of 95 %. 

According to [19], the MobileNetV2-SSD [16] and 
the EfficientDet [20] are the most commonly used models 
in research papers, followed by YOLO models [21]. Ad-
ditionally, CenterNet’s [22] unique architecture and ap-
proach enabled it to achieve the best results among all 
single-stage detectors on the MS COCO dataset [38], 
while maintaining a high computational speed. Therefore, 
we selected all the aforementioned models for a compari-
son in our study. 

EfficientDet [20] followed the one-stage detector archi-
tecture and was built upon EfficientNet [23], which was 
pre-trained on ImageNet. To enhance its performance, it 
included a weighted bi-directional feature pyramid layer 
(BiFPN), which enabled an efficient multi-scale feature fu-
sion using a bi-directional information flow – a new fast 
normalized fusion technique that adjusted a weight of each 
input feature based on its contribution to an output, and fast 
depthwise separable convolutions [24]. Next, the BiFPN 
output was processed by a class network and a block net-
work, which generated predictions for an object class and 
bounding boxes, respectively.  

Several studies applied EfficientDet to different ob-
ject detection tasks and evaluated its performance on var-
ious hardware. For instance, Nguyen et al. [25] used Effi-
cientDet on Nvidia Jetson TX2 for a real-time vehicle de-
tection and achieved 47.3 % mean average precision 
(mAP) at Intersection over Union (IoU) of 75 % 
(mAP:0.75) with EfficientDet-D0 512x512 model and 
16.5 frames per second on the KITTY dataset. An appli-
cation of EfficientDet in fabric defect detection was used 
to enhance an accuracy of an industrial defect detection 
for textile production lines. A recent study by Song et al. 
[26] implemented EfficientDet-D0 512x512 model on 
NVIDIA Jetson TX2 for this task. Among several other 
models, EfficientDet achieved a highest accuracy and de-
tection speed on five different datasets.  

The single-stage YOLO architecture was first intro-
duced by Redmon et al. [21]. Currently, several modifica-
tions and versions of YOLO family models were imple-
mented providing a substantial increase in a detection 
speed and accuracy. A number of research papers have 
adopted the YOLO architecture for a variety of tasks. For 
example, YoloV3 was used by Abdulganeev et al. [27] 
for a door handle detection for mobile robots. Lyu et al. 
[28] utilized a modified version of YoloV5 model on 
Nvidia Jetson Xavier NX for detecting and counting 
green citrus in orchards. They achieved a high mean av-
erage precision of 98.23 % at 0.5 intersection over a un-
ion threshold and 28 frames per second on a custom da-
taset comprising 620 test images with a size of 416×416. 

This paper focuses on YoloV5 [29], YoloV7 [30] and 
YoloV8 [31] models, which are considered to be the most 



http://www.computeroptics.ru journal@computeroptics.ru 

244 Computer Optics, 2024, Vol. 48(2)   DOI: 10.18287/2412-6179-CO-1343 

recent and widely used within the YOLO family. YoloV5 
is much easier to train and is more lightweight then pre-
vious YOLO models, while YoloV7 promises a signifi-
cant improvement in speed and accuracy over YoloV5. 
However, some studies (e.g., [32], [33]) suggested that 
this improved computational speed is only observable on 
high-speed GPUs such as Nvidia RTX 3090 or Tesla 
A100, while on standard GPU or CPU systems YoloV7 
may perform slower than YoloV5. On the other hand, in 
addition to the YoloV7 model, the authors in [30] intro-
duced a lightweight version called YoloV7-tiny. This 
version is optimized for edge devices and is also included 
in our comparison. Finally, the latest addition to the YO-
LO family, YoloV8, promises an improved performance 
and accuracy when compared to YoloV5 and YoloV7. 

CenterNet [22] was introduced in 2018 and is known 
for its high accuracy and fast inference speed compared 
to two-stage object detection networks like Faster R-
CNN. CenterNet used a keypoint detection approach, 
where a single point was assigned to each object instead 
of a bounding box. This approach allowed the network to 
focus on a center of objects, which was crucial for detect-
ing small and dense objects. Additionally, the network 
utilized a regression network to estimate an object size 
and pose. In a recent study by Xia et al. [34], the authors 
used CenterNet with MobileNetV1 backbone for an insu-
lator defect detection during a power lines inspection task 
with a UAV. Their model achieved a mean average preci-
sion of 90 % and a frame rate of 15 frames per second 
(FPS) on an Intel Core i7-8700 CPU, outperforming the 
original CenterNet with the ResNet-50 backbone. 

Various transformation methods are available for op-
timizing a size and a speed of neural network models. 
One of the most effective techniques is a quantization, 
which targets for reducing a number of bits that represent 
weights and activations in a model [35] [36]. There are 
two primary approaches to the quantization: a post-
training quantization (PTQ) and a quantization-aware 
training (QAT). The first approach involves a neural net-
work quantizing after it has been trained with floating-
point computations. This approach is straightforward to 
use but it often leads to a high loss of accuracy. To miti-
gate this, QAT is employed. This approach retrains a neu-
ral network using a forward pass quantization simulation, 
which enables a model to maintain its accuracy even with 
a full-integer quantization. 

Challenges and limitations of running object detec-
tion models on low-constrained devices as well as 
benchmarking results were explored by Cantero et al. 
[37]. They demonstrated a performance of several mod-
els on the i-MX8M-PLUS processor and Coral Dev 
Board. Our research extends the evaluation to the Rasp-
berry Pi 4B, Raspberry Pi 3B and Jetson Nano, and in-
corporates three additional models, YoloV5, YoloV7 
and YoloV8, and examines different model sizes. More-
over, we expand the analysis by fine-tuning and evaluat-
ing models on a custom dataset. This allows us to inves-

tigate the models' capability to achieve a high accuracy 
on a smaller training dataset. 

2. Instruments 

To evaluate a performance of neural networks in an 
object recognition, a number of tools and instruments are 
required for conducting experiments and collecting data. 
This section describes instruments and software used in 
our experiments, including hardware specifications, con-
figuration details, software libraries, and frameworks. 

2.1. Models 

The following 6 model architectures for object detec-
tion were used in our research: 

 SSD MobilenetV2 FPN-lite [16]; 
 EfficientDet Lite D0/D3 [20]; 
 CenterNet MobileNetV2 FPN [22]; 
 YoloV5 Small [29]; 
 YoloV7 + YoloV7 Tiny [30]; 
 YoloV8 Small [31]. 
Each model (except YoloV7) was trained and evalu-

ated with two different input layer sizes: 320×320 and 
512×512. Next, each model (except YoloV7 and Center-
Net) was optimized using int8 post-training quantization. 
It was observed that due to the YoloV7 and CenterNet 
models’ architecture, the TFLiteConverter tool failed to 
perform a quantization on these models correctly. A simi-
lar issue arose with the YoloV8 model, but it was suc-
cessfully resolved by manually removing an extra layer 
of dequantization that the tool had added automatically. 
Lastly, YoloV5 has a version obtained via quantization-
aware training. In total, 22 models were covered in the 
comparison. All of them were pre-trained on the Mi-
crosoft COCO (Common Object in Context) dataset [38] 
and fine-tuned using the custom dataset, which is further 
described in subsection 1.4. 

We applied various data augmentations during the 
training for different architectures: a random horizontal 
flip (with 50 % probability) and a random crop (ensuring 
at least 75 % of an initial image area is retained) for SSD, 
CenterNet, and EfficientDet; default YOLO augmenta-
tions of a mosaic augmentation, a horizontal flip, a HSV 
augmentation, a scale, and a translate for YOLO models. 
Additionally, each model was trained using its default 
hyperparameters from the pretraining on the COCO da-
taset, as provided in the official Tensorflow repository for 
SSD, CenterNet, and EfficientDet, and in the correspond-
ing YOLO repositories for YOLO models. The training 
was stopped if a model failed improving mAP on a vali-
dation sample for over 300 epochs for the YOLO models 
and 5000 epochs for all other models. 

2.2. Hardware 

Three microcomputers were used in the experi-
ments: 

 Raspberry Pi 4B, equipped with ARM Broadcom 
BCM2711 Cortex-A72 4-core processor running 



Comparative analysis of neural network models performance on low-power devices…  Zagitov A. et al. 

Computer Optics, 2024, Vol. 48(2)   DOI: 10.18287/2412-6179-CO-1343 245 

at 1.5GHz, 8 GB of RAM, and Debian 10 Buster 
64-bit OS installed; 

 Raspberry Pi 3B, equipped with ARM Broadcom 
BCM2837 Cortex-A53 4-core processor running 
at 1.2 GHz, 1 GB of RAM, and Debian 10 Buster 
64-bit OS; 

 NVIDIA Jetson Nano Developer Kit, equipped 
with ARM Cortex-A57 4-core processor running 
at 1.43 GHz, 4 GB of RAM, and Ubuntu 20.04 64-
bit OS installed. 

The Raspberry Pi 4B, Raspberry Pi 3B, and Jetson 
Nano are microcomputers that can be used for a variety 
of applications and are used in the majority of studies, ac-
cording to [19]. The Raspberry Pi 4B is versatile and 
cost-effective, while the Raspberry Pi 3B is an older ver-
sion that is still widely used. The Jetson Nano is designed 
specifically for AI and machine learning applications and 
is known for its high performance and low power con-
sumption. 

The PC for model trained had AMD Ryzen 7 3700X 
8-core processor, 32 GB of RAM, NVIDIA GeForce 
RTX 3060 12 GB GPU and Windows 10 OS with WSL2 
Ubuntu 20.04. The tests were conducted using the same 
PC and operating system. 

2.3. Frameworks 

TensorFlow 2 Object Detection API [14] was used as 
a framework for training MobilenetV2, EfficientDet and 
CenterNet SSD models. PyTorch [39] was used to train 
YoloV5, YoloV7 and YoloV8. 

There are a variety of runtime frameworks for deep 
learning models, designed for low-power devices and 
supported by Raspberry Pi 4B, Raspberry Pi 3B and Jet-
son Nano, such as ncnn, MNN or TensorFlow Lite 
runtime. This paper uses the latter due to its ease of use, 
detailed documentation, and many accompanying useful 
tools for working with .tflite models. Additionally, Ten-
sorflow Lite is a common choice for TinyML applica-
tions [40]. It's worth noting that Tensorflow Lite is de-
signed to support an inference only on CPU and may not 
be the optimal choice for devices with powerful GPUs, 
such as Jetson Nano. 

2.4. Datasets 

Often, object detection models are trained and tested 
on large public datasets, such as MS COCO. However, 
when it comes to a specific task, only a small number of 
object classes may be relevant. Additionally, collecting a 
suitable dataset can be one of the most expensive aspects 
of implementing deep learning algorithms. 

For the model fine-tuning we use our custom dataset 
of 913 images of three unique household objects, each 
forming a separate class: a toy, a can opener, and a to-
nometer. Additionally, the dataset includes some images 
with no objects present (forming a background).  

A selection of such dataset was driven by a desire to 
evaluate the model quality using non-typical objects that 

are not commonly found in existing datasets. Secondly, 
we wanted to test the models' ability to achieve a high ac-
curacy with a relatively small amount of training data, 
which can be valuable in real-world scenarios for low-
cost robots with limited resources, e.g., swarm applica-
tions. Initially, the dataset idea derived from an educa-
tional robotics project that had been focused on a detec-
tion of several specific objects’ using a small self-
constructed dataset (while a usage of existing open source 
datasets was forbidden).  

The dataset was divided into 3 parts: 
 A training set: 595 images; 
 A validation set: 148 images; 
 A test set: 170 images. 
The images in the dataset were captured under various 

lighting conditions and from different angles and distanc-
es from the objects. Examples of training data are shown 
in Fig. 1. Table 1 specifies a number of labelled objects in 
each set and demonstrates that all parts of the dataset are 
mostly balanced. Note that a single image may contain 
multiple labeled objects. 

Tab. 1. Number of labeled objects  

Object Train Validation Test 
Toy 209 56 67 

Can opener 236 43 67 
Tonometer 211 60 66 
Background 35 8 10 

a)   b)  

c)   d)  
Fig. 1. Some examples of the training data: a) toy; b) can 

opener; c) tonometer; d) background (no objects) 

2.5. Metrics 

The metrics chosen for evaluating a quality of detections 
were mAP with an Intersection-over-Union (IoU) threshold 
of 0.5 and an average mAP over a range of IoU levels from 
0.5 to 0.95 with a step frequency of 0.05 (mAP:0.5-0.95). To 
evaluate an inference speed of each model, we measured La-
tency, which is the average inference time per frame in mil-
liseconds. For a reader convenience, we also provide an av-
erage expected FPS, calculated using equation (1). 



http://www.computeroptics.ru journal@computeroptics.ru 

246 Computer Optics, 2024, Vol. 48(2)   DOI: 10.18287/2412-6179-CO-1343 

1000
.FPS

Latency
  (1) 

2.6. Additional instruments 

The dataset was annotated using the Microsoft Visual 
Object Tagging Tool (VoTT). The official TFLiteConvert-
er tool allowed us to obtain a model in .tflite format sup-
ported by TensorFlow Lite and apply PTQ to the complet-
ed model. We also utilized the TFLite Model Benchmark 
Tool, another official tool by the TensorFlow developers, 
which allows for easy and accurate measurement of a 
speed of TFLite models. Furthermore, we optimized 
YoloV5 using QAT with SparseML [41]. SparseML is a 
set of tools designed to simplify an implementation of ad-
vanced sparsification techniques, such as pruning and 
quantization, on any type of neural networks. 

3. Experimental results 

Tab. 2 displays an evaluation of the quality metrics 
for models of varying sizes on the test set, with the [int8] 
label indicating that the PTQ was used, and [QAT] indi-
cating the model was optimized through the quantization-
aware training. Examples of successful and incorrect de-
tections for quantized EfficientDet 320×320 are shown 
accordingly in Fig. 2 and Fig. 3. 

 
Fig. 2. Examples of successful detections on test data with int8 

quantized EfficientDet for 320×320 model size 

Tab. 3 presents an average processing time of a single 
image for each model in milliseconds; the average pro-
cessing time was evaluated based on a sample of 1000 
randomly selected images. It is important to note that the 
latency and FPS values shown are only for the model's in-
ference time and the application of Non-Maximum Sup-
pression to the output. The time required for prepro-
cessing an image is typically constant for a given task, 
but can vary between different tasks. For these reasons, 
time for an image or a frame pre-processing and any ad-
ditional post-processing of the results were not included 

in these values. The table is divided into two vertical and 
two horizontal blocks. Within the vertical blocks, the left 
block displays the latency in milliseconds and the right 
one displays FPS. Within the horizontal blocks, the top 
block contains results for 512x512 model size, while the 
bottom block stands for 320x320 model size. 

 
Fig. 3. Examples of incorrect detections on test data with int8 

quantized EfficientDet for 320×320 model size 

Tab. 2. Models accuracy 

Model 

Accuracy  

Input layer 320×320 Input layer 512×512 
mAP:0.5-

0.95 
mAP:0.5 

mAP:0.5-
0.95 

mAP:0.5 

CenterNet 0.406 0.595 0.494 0.704 
EfficientDet 

Lite 
0.557 0.781 0.707 0.860 

EfficientDet 
Lite [int8] 

0.541 0.782 0.700 0.860 

SSD  0.451 0.674 0.510 0.719 
SSD [int8] 0.401 0.647 0.498 0.720 

YoloV5 0.585 0.799 0.703 0.893 
YoloV5 
[int8] 

0.355 0.607 0.3 0.609 

YoloV5 
[QAT] 

0.549 0.852 0.586 0.894 

YoloV7 0.717 0.93 - - 
YoloV7  

Tiny 
0.609 0.857 - - 

YoloV8 0.586 0.776 0.662 0.825 

YoloV8 
[int8] 

0.45 0.69 0.552 0.792 

A relationship between the model quality and the com-
putation speed for each platform is illustrated by Fig. 4. The 
vertical axis of the graph represents the mean average preci-
sion of each model, which is calculated over a range of IoU 
thresholds from 0.5 to 0.95. The horizontal axis represents 
the latency of each model, which is the average amount of 
time it takes to process a single image. The dashed arrows 
show changes in models after quantization. The quantized 



Comparative analysis of neural network models performance on low-power devices…  Zagitov A. et al. 

Computer Optics, 2024, Vol. 48(2)   DOI: 10.18287/2412-6179-CO-1343 247 

models using PTQ are marked with circles around points, 
while those optimized using QAT are marked with squares 

around points. Different models have different colors; dif-
ferent model sizes are marked with different symbols. 

Tab. 3. Inference time comparison 

Model 

Inference Time  
Latency (ms) FPS 

PC Jetson Nano 
Raspberry 

Pi 4B 
Raspberry 

Pi 3B 
PC Jetson Nano 

Raspberry 
Pi 4B 

Raspberry 
Pi 3B 

512×512 
CenterNet MobileNetV2  17 262 490 1802 58 3.8 2 0.5 

EfficientDet Lite D3  65 756 1041 4110 15 1.3 0.9 0.2 
EfficientDet Lite D3 

[int8]  
41 491 503 2687 24 2 1.9 0.4 

SSD Mobilenet V2  23 254 416 1674 43 3.9 2.4 0.6 
SSD Mobilenet V2 [int8] 15 177 221 1094 66 5.6 4.5 0.9 

YoloV5  40 690 925 3281 25 1.4 1 0.3 
YoloV5 [int8]  24 345 369 1627 41 2.9 2.7 0.61 
YoloV5 [QAT]  27 358 378 1857 37 2.8 2.6 0.5 

YoloV8  67 1107 1551 5515 14 0.9 0.6 0.18 
YoloV8 [int8]  33 518 557 2396 30 1.9 1.8 0.41 

320×320 
CenterNet MobileNetV2  7 104 189 624 142 9.5 5 1.6 

EfficientDet Lite D0  10 127 176 685 100 7.8 5.6 1.4 
EfficientDet Lite D0 

[int8]  
7 80 85 412 142 12 11.7 2.4 

SSD Mobilenet V2  9 140 158 661 111 7 6.3 1.5 
SSD Mobilenet V2 [int8] 6 70 71 345 166 14 14 2.9 

YoloV5  16 272 370 1525 62 3.6 2.7 0.65 
YoloV5 [int8]  10 135 146 647 100 7.3 6.8 1.5 
YoloV5 [QAT]  10 140 155 674 100 7.1 6.4 1.5 

YoloV7  254 1716 2642 9279 3 0.6 0.37 0.1 
YoloV7 Tiny  42 242 385 1211 23 4.1 2.59 0.82 

YoloV8  27 435 648 2351 37 2.3 1 0.42 
YoloV8 [int8]  14 212 241 959 71 4.7 4 1 

 

Since YoloV7's latency was drastically higher than for 
other models, it is excluded from the graph to improve 
readability. Note that the horizontal axis has three differ-
ent scales: one for Raspberry Pi 4B (Fig. 4a) and Jetson 
Nano (Fig. 4b), and different for Raspberry Pi 3B 
(Fig. 4c) and PC (Fig. 4d). 

4. Discussion 

To assess accuracy of our models we utilized a test set of 
170 images. While using a larger test sample could poten-
tially increase a statistical significance of estimates’ quality, 
we decided to maintain the small test sample size for several 
reasons. Firstly, given the specific task of detecting three 
classes of unique household objects, the dataset inherently 
possesses a limited number of unique objects and scenarios. 
Increasing the test sample size would not introduce substan-
tially different or novel situations, thereby potentially 
providing diminishing returns in terms of an added diversity 
and could lead to a redundancy. Instead, we invested a sig-
nificant effort in carefully selecting the test set to be diverse 
and representative of various scenarios, different from those 
encountered during the model training and validation. The 
test sample was thoughtfully designed to encompass diverse 
lighting conditions, angles, and distances from objects, mak-
ing it more challenging and distinct from the training and 

validation sets. Furthermore, despite utilizing only three 
unique objects across all sets, their complex shapes guaran-
tee substantial variations in appearance when viewed from 
different angles.   

Based on the experiments and the results obtained, we 
made a number of important observations on models and 
device, which are presented in this section. 

4.1. Model comparison 

Although the YoloV7 320×320 model has the highest 
mAP, surpassing even the 512×512 models, it also has 
the highest latency, making it unsuitable for any real-time 
object detection on Raspberry Pi 4 and other low-power 
platforms. On the other hand, the YoloV7 Tiny is the 
most accurate among models that process at least two 
frames per second, as shown in Fig. 5 – 7.  

Fig. 5 presents the mAP comparison. The model is 
shown on the horizontal axis, with each bar representing 
the model's mAP over a range of IoU values from 0.5 to 
0.95. The color of each bar indicates the size of the mod-
el, as well as whether it uses int8 or float16. The models 
are arranged in an ascending order based on the average 
mAP of their float16 performance. 

Fig. 6 and 7 demonstrate an expected FPS comparison 
for Raspberry Pi 4 and NVIDIA Jetson Nano, respective-



http://www.computeroptics.ru journal@computeroptics.ru 

248 Computer Optics, 2024, Vol. 48(2)   DOI: 10.18287/2412-6179-CO-1343 

ly; each bar of the graphs represents a number of FPS 
processed by the model.  

The standard YoloV5 has a fairly average accuracy 
and quality. Unfortunately, the PTQ affects the accuracy 

of YoloV5 much more than other models, which can be 
seen in Fig. 4 or 5. However, with QAT it was possible to 
recover most of the accuracy losses while maintaining 
more than a 2-fold increase in speed. 

a)   b)  

c)   d)  
Fig. 4. Scatter plot of latency versus mAP on: a) Raspberry Pi 4B; b) NVIDIA Jetson Nano; c) Raspberry Pi 3B; d) PC 

YoloV8 models perform better in terms of accuracy 
with the post-training int8 quantization than YoloV5 
quantized models, but still not as well as YoloV5 models 
optimized with QAT. It's worth noting that YoloV8 is a 
recent addition to the YOLO family, and using SparseML 
QAT for YoloV8, when it becomes available, could fur-
ther improve its accuracy. 

 
Fig. 5. Mean average precision comparison 

 
Fig. 6. Raspberry Pi 4 expected FPS comparison 

Fig. 8 compares floating-point models (fp16) and quan-
tized models (int8) in terms of average FPS and mAP. The 
graph illustrates the average speed improvement achieved 
by quantized models compared to floating-point models, as 
well as the average decrease in mAP resulting from the 
quantization, evaluated across all platforms. The X-axis 
represents the different models tested, the Y-axis repre-
sents the average difference in percentage, and the color 



Comparative analysis of neural network models performance on low-power devices…  Zagitov A. et al. 

Computer Optics, 2024, Vol. 48(2)   DOI: 10.18287/2412-6179-CO-1343 249 

represents the metric. The dashed line represents the over-
all average difference across all models.  

 
Fig. 7. NVIDIA Jetson Nano expected FPS 

Fig. 9 compares 512×512 and 320×320 sized models 
in terms of average FPS and mAP. The graph illustrates 
the average speed improvement achieved by reducing the 
model size from 512×512 to 320×320, as well as the av-
erage decrease in mAP resulting from this reduction in 
size, evaluated across all platforms. 

When comparing floating-point models (fp16) to 
quantized models (int8), the average speed improvement 
is 96 % with a 19 % average decreased in mAP as demon-
strated by dashed lines in Fig. 8. By reducing the model 
size from 512×512 to 320×320, the average speed gain 
was approximately 154 % with an average decrease in 
mAP of 16 % as demonstrated by dashed lines in Fig. 9. 
The overall average difference for FPS was calculated 
without including EfficientDet since it had a significantly 
higher speedup compared to other models. 

To assess the statistical significance of the model per-
formance comparison, we performed paired t-tests on the 
inference times for all models on both Raspberry Pi 4 and 
PC. The results reveal significant differences (p ≤ 0.05) in 
latency among most models. However, some pairs of 
models did not show statistically significant differences 
in performance; these include YoloV5 [QAT] vs. SSD 
MobilenetV2 [FP16], YoloV5 [QAT] 512×512 vs. 
YoloV7 Tiny 320×320. Notably, there was no significant 
difference in performance between YoloV5 [int8] vs. 
YoloV5 [QAT]. 

 
Fig. 8. Comparison of floating-point models (fp16) and 

quantized models (int8) in terms of average FPS and mAP 

 
Fig. 9. Comparison of 512×512 and 320×320 sized models 

in terms of average FPS and mAP 

In addition, it was noted that quantized models had a 
higher rate of repeated detections, which cannot be relia-
bly resolved by applying the Non-Maximum Suppression 
algorithm, as illustrated by Fig. 10. 

a)   b)  
Fig. 10. Example of incorrect detection after quantization:  

a) YoloV5 320×320 fp16; b) YoloV5 320×320 after int8 PTQ 

The most efficient model in terms of accuracy vs. in-
ference speed was the quantized EfficientDet Lite 
320×320 on all devices. It's worth noting that both ver-
sions of EfficientDet Lite demonstrated a very little loss 
in accuracy that followed the quantization process. 

The comparison of our results with previous works 
reveals a number of interesting insights. EfficientDet 
stands out as one of the most efficient detectors for mo-
bile devices and embedded platforms, which is supported 
by the original study [20] and by other research papers, 
e.g., [26]. Comparing the models' accuracy to other works 
is challenging due to typically custom datasets that limit 
direct comparisons. However, when evaluating a relative 
performance of the 512×512 models without quantization 
in terms of mAP:0.5 – 0.95, their order remains consistent 
with results on the COCO val2017 dataset, with an ex-
ception of YoloV8, which demonstrated a slightly lower 
performance in our experiments. 

Comparing a latency across models is also a challeng-
ing task, with limited prior studies using the same input 
sizes and quantization on the same devices. For example, 
in [42], authors assessed a frame rate of EfficientDet with 
different input sizes on Raspberry Pi 3, yielding results 
(1.1 FPS for 320×320 version (D0) and 0.4 FPS for 
512×512 version (D3)) consistent with our findings. An-
other work [43] utilized SSD MobileNet V2 at 320×320 
input size on Raspberry Pi 4B and achieved 5.2 FPS, 
which mostly aligns with our recorded 6.3 FPS. 



http://www.computeroptics.ru journal@computeroptics.ru 

250 Computer Optics, 2024, Vol. 48(2)   DOI: 10.18287/2412-6179-CO-1343 

4.2. Device comparison 

After assessing differences between devices by calcu-
lating the overall average FPS across all models, as 
shown in Fig. 11, and also by averaging the differences 
between individual models, the following data was ob-
tained: the Jetson Nano was approximately 90 % slower 
than the PC, the Raspberry Pi 4B was approximately 
20 % slower than the Jetson Nano, and the Raspberry Pi 
3B was approximately 75 % slower than the Raspberry Pi 
4B. The data for the PC is not presented in Fig. 11 to im-
prove its readability due to scaling. The red arrows 
demonstrate the FPS decrease and the numbers below the 
arrows show the relative decrease percentage of the right 
(to the arrow) bar with respect to the left bar.  

 
Fig. 11. Average frames per second across  

all models for each device, except PC 

Notably, certain models, including the CenterNet, 
SSD MobileNet V2 512×512 [FP16], YoloV7 and 
YoloV7 Tiny, showed a larger performance difference 
between the Jetson Nano and the Raspberry Pi 4B, with a 
gap of around 40 %, while the remaining models showed 
a performance difference of around 15 % between the two 
devices. Additionally, when performing paired t-tests on 
the results of the same model on Raspberry Pi 4B and 
Jetson Nano, we observed significant differences 
(p ≤ 0.05) for most models, except for quantized Effi-
cientDet models and quantized SSD Mo-
bileNetV2 320×320. 

The small difference between the Raspberry Pi 4B 
and the Jetson Nano was due to their comparable CPU 
power. As it was mentioned earlier, Tensorflow Lite only 
uses the CPU for inference. Therefore, a different runtime 
inference engine, such as TensorRT, may be more appro-
priate for the Jetson Nano, which has a significantly more 
powerful GPU compared to the Raspberry Pi 4B. 

The Raspberry Pi 3B is generally not suitable for real-
time object detection, since only the SSD MobileNet 
V2 320×320 with int8 quantization and the EfficientDet Lite 
320×320 with int8 quantization can deliver around 2 FPS. 

Conclusions 

In this paper, we have presented a comparative analysis 
of the fine-tuned MobileNetV2 SSD, CenterNet Mo-

bileNetV2, EfficientDet Lite, YoloV5, YoloV7 and YoloV8 
models. The experiments carried out on the Raspberry Pi 
4B, Raspberry Pi 3B and NVIDIA Jetson Nano. 

The experimental results demonstrated that the most 
appropriate algorithm selection depends on task require-
ments. For tasks that require around 2 FPS on Raspberry 
Pi 4B, EfficientDet Lite 512×512 quantized or YoloV7 
Tiny are recommended. If the task demands more than 10 
FPS, then EfficientDet Lite 320×320 quantized or SSD 
Mobilenet V2 320×320 should be preferred. Finally, 
tasks with intermediate FPS requirements were best 
served by either EfficientDet Lite 320×320 or 
YoloV5 320×320 with QAT. 

The presented comparative analysis of models and op-
timization methods in terms of accuracy and performance 
could guide researchers, educators, and engineers in se-
lection of the most suitable approaches and instruments 
for use on low-performance devices. 

Acknowledgements 

This paper has been supported by the Kazan Federal 
University Strategic Academic Leadership Program 
("PRIORITY-2030").  

References 

[1] Javaid M, Haleem A, Singh RP, Rab S, Suman R. Explor-
ing impact and features of machine vision for progressive 
industry 4.0 culture. Sens Int 2022; 3: 100132. 

[2] Nicholson L, Milford M, Sünderhauf N. QuadricSLAM: 
Dual quadrics from object detections as landmarks in ob-
ject-oriented SLAM. IEEE Robot Autom Lett 2019; 4(1): 
1-8. 

[3] Motoda T, Petit D, Nishi T, Nagata K, Wan W, Harada K. 
Shelf replenishment based on object arrangement detection 
and collapse prediction for bimanual manipulation. Robot-
ics 2022; 11(5): 104. 

[4] Elhassouny A, Smarandache F. Trends in deep convolu-
tional neural Networks architectures: a review. 2019 Int 
Conf of Computer Science and Renewable Energies (IC-
CSRE) 2019: 1-8. 

[5] Branco S, Ferreira AG, Cabral J. Machine learning in re-
source-scarce embedded systems, FPGAs, and end-
devices: A survey. Electronics 2019; 8(11): 1289. 

[6] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, 
Weyand T, Andreetto M, Adam H. MobileNets: Efficient 
convolutional neural networks for mobile vision applica-
tions. arXiv Preprint. 2017. Source: 
<https://arxiv.org/abs/1704.04861>. 

[7] Abadi M, et al. TensorFlow: A system for large-scale 
machine learning. In Book: Keeton K, Roscoe T, eds. 
Proceedings of the 12th USENIX conference on operat-
ing systems design and implementation, Savannah, GA, 
USA, 2016. Berkeley, CA: USENIX Association; 2016: 
265-283. 

[8] Tencent/ncnn. 2018. Source:  
<https://github.com/Tencent/ncnn>.  

[9] Jiang X, et al. MNN: A universal and efficient inference 
engine. Proc 3rd MLSys Conf 2020; 2: 1-13. 

[10] Myrzin V, Tsoy T, Bai Y, Svinin M, Magid E. Visual data 
processing framework for a skin-based human detection. In 
Book: Ronzhin A, Rigoll G, Meshcheryakov R, eds. Inter-
active collaborative robotics. 6th International Conference, 



Comparative analysis of neural network models performance on low-power devices…  Zagitov A. et al. 

Computer Optics, 2024, Vol. 48(2)   DOI: 10.18287/2412-6179-CO-1343 251 

ICR 2021. Cham, Switzerland: Springer Nature Switzer-
land AG; 2021: 138-149. 

[11] Buyval A, Gavrilenkov M, Magid E. A multithreaded algo-
rithm of UAV visual localization based on a 3D model of en-
vironment: implementation with CUDA technology and CNN 
filtering of minor importance objects. 2017 Int Conf on Artifi-
cial Life and Robotics (ICAROB 2017) 2017; 22: 356-359. 

[12] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hi-
erarchies for accurate object detection and semantic seg-
mentation. 2014 IEEE Conf on Computer Vision and Pat-
tern Recognition (CVPR) 2014: 580-587. 

[13] Liu W, et al. SSD: Single shot multibox detector. In Book: 
Leibe B, Matas J, Sebe N, Welling M, eds. Computer Vi-
sion – ECCV 2016. Pt I. Cham, Switzerland: Springer In-
ternational Publishing AG; 2016: 21-37. 

[14] Huang J, et al. Speed/accuracy trade-offs for modern con-
volutional object detectors. Proc IEEE Conf on Computer 
Vision and Pattern Recognition (CVPR) 2017: 3296-3297. 

[15] Li Y, Huang H, Xie Q, Yao L, Chen Q. Research on a sur-
face defect detection algorithm based on MobileNet-SSD. 
Appl Sci 2018; 8(9): 1678. 

[16] Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. 
MobileNetV2: Inverted residuals and linear bottlenecks. 
2018 IEEE/CVF Conf on Computer Vision and Pattern 
Recognition (CVPR) 2018: 4510-4520. 

[17] Zhang F, Li Q, Ren Y, Xu H, Song Y, Liu S. An expres-
sion recognition method on robots based on MobileNet 
V2-SSD. 2019 6th Int Conf on Systems and Informatics 
(ICSAI) 2019: 118-122. 

[18] Ahmed I, Ahmad M, Ahmad A, Jeon G. IoT-based crowd 
monitoring system: Using SSD with transfer learning. 
Comput Electr Eng 2021; 93: 107226. 

[19] Kamath V, Renuka A. Deep learning based object detec-
tion for resource constrained devices: Systematic review, 
future trends and challenges ahead. Neurocomputing 2023; 
531: 34-60. 

[20] Tan M, Pang R, Le QV. EfficientDet: Scalable and efficient 
object detection. Proc IEEE/CVF Conf on Computer Vision 
and Pattern Recognition (CVPR) 2020: 10778-10787. 

[21] Redmon J, Divvala S, Girshick R, Farhadi A. You only 
look once: Unified, real-time object detection. Proc IEEE 
Conf on Computer Vision and Pattern Recognition 
(CVPR) 2016: 779-788. 

[22] Zhou X, Wang D, Krähenbühl P. Objects as points. arXiv 
Preprint. 2019. Source: <http://arxiv.org/abs/1904.07850>. 

[23] Tan M, Le Q. EfficientNet: Rethinking model scaling for 
convolutional neural networks. Int Conf on Machine 
Learning (ICML) 2019: 6105-6114. 

[24] Chollet F. Xception: Deep learning with depthwise separa-
ble convolutions. IEEE Conf on Computer Vision and Pat-
tern Recognition (CVPR) 2017: 1251-1258. 

[25] Nguyen H-H, Tran DN-N, Jeon JW. Towards real-time 
vehicle detection on edge devices with Nvidia Jetson TX2. 
2020 IEEE Int Conf on Consumer Electronics – Asia (IC-
CE-Asia) 2020: 1-4. 

[26] Song S, Jing J, Huang Y, Shi M. EfficientDet for fabric de-
fect detection based on edge computing. J Eng Fibers Fabr 
2021; 16: 1-13. 

[27] Abdulganeev R, Lavrenov R, Safin R, Bai Y, Magid E. 
Door handle detection modelling for Servosila Engineer 

robot in Gazebo simulator. 2022 Int Siberian Conf on Con-
trol and Communications (SIBCON) 2022: 1-4. 

[28] Lyu S, Li R, Zhao Y, Li Z, Fan R, Liu S. Green citrus de-
tection and counting in orchards based on YOLOv5-CS 
and AI edge system. Sensors 2022; 22(2): 576. 

[29] ultralytics/yolov5. 2020. Source:  
<https://github.com/ultralytics/yolov5>. 

[30] Wang C-Y, Bochkovskiy A, Liao H-YM. YOLOv7: Train-
able bag-of-freebies sets new state-of-the-art for real-time 
object detectors. arXiv Preprint. 2022. Source: 
<https://arxiv.org/abs/2207.02696>. 

[31] ultralytics/ultralytics. 2023. Source:  
<https://github.com/ultralytics/ultralytics>. 

[32] Gillani IS, et al. Yolov5, Yolo-x, Yolo-r, Yolov7 Perfor-
mance comparison: A survey. 8th Int Conf on Artificial In-
telligence and Fuzzy Logic System (AIFZ 2022) 2022. 
DOI: 10.5121/csit.2022.121602. 

[33] Nguyen H-V, Bae J-H, Lee Y-E, Lee H-S, Kwon K-R. 
Comparison of pre-trained YOLO models on steel surface 
defects detector based on transfer learning with GPU-based 
embedded devices. Sensors 2022; 22(24): 9926. 

[34] Xia H, Yang B, Li Y, Wang B. An improved CenterNet 
model for insulator defect detection using aerial imagery. 
Sensors 2022; 22(8): 2850. 

[35] Jacob B, et al. Quantization and training of neural net-
works for efficient integer-arithmetic-only inference. Proc 
IEEE/CVF Conf on Computer Vision and Pattern Recogni-
tion (CVPR) 2018: 2704-2713. 

[36] Wu H, Judd P, Zhang X, Isaev M, Micikevicius P. Integer 
quantization for deep learning inference: Principles and 
empirical evaluation. arXiv Preprint. 2020. Source: 
<http://arxiv.org/abs/2004.09602>. 

[37] Cantero D, Esnaola-Gonzalez I, Miguel-Alonso J, Jauregi 
E. Benchmarking object detection deep learning models in 
embedded devices. Sensors 2022; 22(11): 4205. 

[38] Lin T-Y, et al. Microsoft COCO: Common objects in con-
text. In Book: Fleet D, Pajdla T, Schiele B, Tuytelaars T, 
eds. Computer Vision--ECCV 2014. Pt V. Cham, Switzer-
land: Springer International Publishing Switzerland; 2014: 
740-755.  

[39] Paszke A, et al. PyTorch: An imperative style, high-
performance deep learning library. NIPS'19: Proc 33rd Int 
Conf on Neural Information Processing Systems 2019: 
8024-8035. 

[40] Han H, Siebert J. TinyML: A systematic review and syn-
thesis of existing research. 2022 Int Conf on Artificial In-
telligence in Information and Communication (ICAIIC) 
2022: 269-274. 

[41] Kurtz M, et al. Inducing and exploiting activation sparsity 
for fast inference on deep neural networks. Int Conf on 
Machine Learning 2020: 5533-5543. 

[42] Kamath V, A R. Performance analysis of the pretrained Ef-
ficientDet for real-time object detection on Raspberry Pi. 
2021 Int Conf on Circuits, Controls and Communications 
(CCUBE) 2021: 1-6. 

[43] Konaite M, Owolawi PA, Mapayi T, Malele V, Odeyemi 
K, Aiyetoro G, Ojo JS. Smart hat for the blind with real-
time object detection using Raspberry Pi and TensorFlow 
lite. Proc Int Conf on Artificial Intelligence and Its Appli-
cations (icARTi '21) 2021: 6. 

 

 

Authors’ information  

Artur Zagitov (b. 2001), currently is an undergraduate student of Institute of Information Technology and Intelli-
gent Systems in Kazan Federal University. Research interests are computer vision and machine learning.  
E-mail: artazagitov@gmail.com 



http://www.computeroptics.ru journal@computeroptics.ru 

252 Computer Optics, 2024, Vol. 48(2)   DOI: 10.18287/2412-6179-CO-1343 

 
Elvira Chebotareva (b. 1983), currently an associate professor in Institute of Information Technology and Intelli-

gent Systems at Kazan Federal University, Russia. Research interests are intelligent robotic systems, mobile robotics, 
collaborative robotics, computer vision applications in robotics. E-mail: elvira.chebotareva@kpfu.ru 

 
Alexander Toschev (b. 1989), currently an assistant professor in Institute of Information Technology and Intelligent 

Systems at Kazan Federal University, Russia. Research interests are artificial intelligence, machine cognition, and ma-
chine learning. E-mail: atoschev@kpfu.ru 

 
Evgeni Magid (b. 1975), currently a full professor, a Head of Intelligent Robotics department and a Head of Labor-

atory of Intelligent Robotic Systems (LIRS) at Kazan Federal University, Russia. A full professor at HSE University, 
Russia. Senior IEEE member. Previously he worked at University of Bristol, UK; Carnegie Mellon University, USA; 
University of Tsukuba, Japan; National Institute of Advanced Industrial Science and Technology, Japan. He earned his 
Ph.D. degree from University of Tsukuba, Japan. He authors over 270 publications. Research interests are mobile robot-
ics, path planning, search and rescue robotics, human robot interaction, medical robotics, heterogeneous robotic teams, 
image processing, and computer vision. E-mail: magid@it.kfu.ru 

 
 

 

Code of State Categories Scientific and Technical Information (in Russian – GRNTI)): 28.23.15 
Received May 10, 2023. The final version – August 3, 2023.  

 


