Reflected four-zones subwavelenghth mictooptics element for polarization conversion from linear to radial
A.G. Nalimov, L. O'Faolain, S.S. Stafeev, M.I. Shanina, V.V.Kotlyar

PDF, 2016 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-2-229-236

Pages: 229-236.

Abstract:
A four zone subwavelength binary diffraction optical micro element (size of 100x100 mkm) for polarization transformation from linear to radial was calculated and designed. A grating period was equal to 400 nm, a height of the element was equal to 110 nm in a gold film for a wavelength of 633 nm. Simulation by FDTD method and Rayleight-Zommerfeld integral shown, that despite only four zones used for polarization transformation to four different angles there are radial polarized light beam in the far field with smooth angle dependence on the beam circle observation position. Experimentally shown that in the near field, depending on the direction of the axis of the polarizer on the output light are two zones 4-zone trace element for one or the other diagonal, which proves the presence of radial polarization in the reflected beam.

Key words:
radial polarization, diffraction subwavelength grating in gold film.

References:

  1. Kotlyar, V.V. Design of diffractive optical elements modulating polarization / V.V. Kotlyar, O.K. Zalyalov // Optik. – 1996. – V. 103, Issue 3. – P. 125-130.
  2. Bozom, Z. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelengtn gratings / Z. Bozom, V. Kleiner, E. Hasman // Optics Letters. – 2001. – V. 26, Issue 18. – P. 1424-1426.
  3. Bozom, Z. Radially and azimutally polarized beams generated by space-variant dielectric subwavelength gratings / Z. Bozom, G. Biener, V. Kleiner, E. Hasman // Optics Letters. – 2002. – V. 27, Issue 5. – P. 285-287.
  4. Niv, A. Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings / A. Niv, G. Biener, V. Kleiner, E. Hasman // Optics Letters. – 2003. – V. 28, Issue 7. – P. 510-512.
  5. Kotlyar, V.V. Vortex laser beams / V.V. Kotlyar, A.A. Ko­valev. – Samara: “IPSI RAS” Publishers, 2012. – 248 p. – (In Russian).
  6. Levy, U. Engineering space-variant inhomogeneous media for polarization control / U. Levy, C.H. Tsai, L. Pang, Y. Fainman // Optics Letters. – 2004. – V. 29, Issue 15. – P. 1718-1720.
  7. Lerman, G.M. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm / G.M. Lerman, U. Levy // Optics Letters. – 2008. – V. 33, Issue 23. – P. 2782-2784.
  8. Mehta, A. Spatially polarizing autocloned elements / A. Me­hta, J.D. Brown, P. Srinivasan, R. Rumph [et al.] // Optics Letters. – 2007. – V. 32, Issue 13. – P. 1935-1937.
  9. Kovalev, A.A. Analytical description of radial and azimutal polarized light and modeling of polarization conversion by subwavelength DOE / A.A. Kovalev, A.G. Nalimov, V.V. Kot­lyar // Computer Optics. – 2009. – V. 33(4). – P. 393-400. – (In Russian).
  10. Kotlyar, V.V. Tight focusing with a binary microaxicon / V.V. Kotlyar, S.S. Stafeev, L. O’Faolain, V.A. Soifer // Optics Letters. – 2011. – V. 36 (16). – P. 3100-3102.
  11. Kotlyar, V.V. Analysis of the shape of a subwavelength focal spot for the linear polarized light / V.V. Kotlyar, S.S. Sta­feev, Yu. Liu, L. O’Faolain, A.A. Kovalev // Applied Optics. – 2013. – V. 52, Issue 3. – P. 330-339.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20