Synthesis of metal materials nanoporous structures with cyclic elasto-plastic deformation under laser treatment using radiation focusators
S.P. Murzin

PDF, 630 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-2-249-255

Pages: 249-255.

Abstract:
The synthesis method of metal materials nanoporous structures formation with cyclic elasto-plastic deformation under laser treatment was developed. The studies of the alloy structure with scanning electron microscopy revealed the following. During various operating modes microcavities of different shapes were formed in the material surface layer depending on the pulse intensity of laser treatment with thermal cycling of copper-zinc L62 alloy: from globular up to 10 µm with peaks and cavities to elongated teardrop and wedge up to 10 µm and length of more than 50 µm. The submicropores were formed during investigated range of exposure modes in L62 brass with a characteristic size more than 1 µm, and during more intense modes - with a width less than 1 µm and a length of more than 20 µm. The study of the copper-zinc alloy L62 fine structure showed microcavities of elongated teardrop and wedge shapes and taper at their edges to form elongated nanoscale channel having width of not more than 100 nm and a length of 10 µm after laser processing with thermal cycling.

Key words:
laser treatment, metal material, nanostructure, cyclic elasto-plastic deformation, radiation focusator.

References:

  1. Chakravarty, R. Role of nanoporous materials in radiochemical separations for biomedical applications / R. Chakravarty, A. Dash // Journal of Nanoscience and Nanotechnology. – 2013. – Vol. 13 (4). – P. 2431-2450.
  2. Lu, S. Nanoporous and nanostructured materials for catalysis, sensor, and gas separation applications / S. Lu // Journal of Nanomaterials. – 2006. – Vol. 2006 – Article ID 48548, 2 p.
  3. Dong, C. Fabrication and functionalization of tunable nanoporous copper structures by hybrid laser deposition and chemical dealloying / C. Dong, M. Zhong, L. Li, T. Huang, M. Ma // Science of Advanced Materials. – 2012. – Vol. 4 (2). – P. 204-213.
  4. Jia, F.L. Nanoporous metal (Cu, Ag, Au) films with high surface area: General fabrication and preliminary electrochemical performance / F.L. Jia, C.F. Yu, K.J. Deng, L.Z. Zhang // Journal of Physical Chemistry C. – 2007. – Vol. 111 (24). – P. 8424-8431.
  5. Shin, H.C. Nanoporous structures prepared by an electrochemical deposition process / H.C. Shin, J. Dong, M. Liu // Advanced Materials. – 2003. – Vol. 15 (19). – P. 1610-1614.
  6. Viswanath, B. Nanoporous Pt with high surface area by reaction-limited aggregation of nanoparticles / B. Viswanath, S. Patra, N. Munichandraiah, N. Ravishankar // Langmuir. – 2009. – Vol. 25 (5). – P. 3115-3121.
  7. Erlebacher, J. Geometric characterization of nanoporous metals / J. Erlebacher, I. McCue // Acta Materialia. – 2012. – Vol. 60 (17). – P. 6164-6174.
  8. Erlebacher, J. Dealloyed Nanoporous Metals for PEM Fuel Cell Catalysis / J. Erlebacher, J. Snyder // ECS Transactions. – 2009. – Vol. 25 (1). – P. 603-612.
  9. Hinze, B. Production of nanoporous superalloy membranes by load-free coarsening of γ′-precipitates / B. Hinze, J. Rösler, F. Schmitz // Acta Materialia. – 2011. – Vol. 59 (8). – P. 3049-3060.
  10. Necker, M. Development of Ni-Fe-Al-based alloys precipitating cubic γ′ for fabrication of nanoporous membranes / M. Necker, J. Rösler, F. Stahl // Journal of Materials Science. – 2013. – Vol. 48(11). – P. 4008-4015.
  11. Petrenec, M. Effect of cyclic heat treatment on cast structure of TiAl alloy / M. Petrenec, E. Vraspírová, K. Nemec, M. Heczko // Key Engineering Materials. – 2014. – Vol. 586. – P. 222-225.
  12. Lv, Z.Q. Effect of cyclic heat treatments on spheroidizing behavior of cementite in high carbon steel / Z.Q. Lv, B. Wang, Z.H. Wang, S.H. Sun, W.T. Fu // Materials Science and Engineering A. – 2013. – Vol. 574. – P. 143-148.
  13. Murzin, S.P. Research of nanoporous structure formation mechanisms in multicomponent brass at a thermocycling by laser influence / S.P. Murzin // Proceedings of Samara RAS Scientific Centre. – 2012. – Vol. 14, N 4-1. – P. 270-274. – ISSN 1990-5378. – (In Russian).
  14. Murzin, S.P. Thermocycling with pulse-periodic laser action for formation of nanoporous structure in metal material / S.P. Murzin, V.I. Tregub, E.V. Shokova, N.V. Tregub // Computer Optics. – 2013. – Vol. 37, N 1. – P. 99-104. – ISSN 0134-2452. – (In Russian).
  15. Murzin, S.P. Application of radiation focusators for creation of nanoporous metal materials with high specific surface area by laser action / S.P. Murzin, V.I. Tregub, A.A. Melnikov, N.V. Tregub // Computer Optics. – 2013. – Vol. 37, N 2. – P. 226-232. – ISSN 0134-2452. – (In Russian).
  16. Murzin, S.P. The research of intensification’s expedients for nanoporous structures formation in metal materials by the selective laser sublimation of alloy’s components / S.P. Murzin // Computer Optics. – 2011. – Vol. 35, N 2. – P. 175-179. – ISSN 0134-2452. – (In Russian).
  17. Murzin, S.P. Nanoporous structure formation in metal materials by cyclic elastoplastic deformation with laser action / S.P. Murzin, V.I. Tregub, E.L. Osetrov, A.M. Nikiforov // Proceedings of Samara RAS Scientific Centre. – 2010. – Vol. 12, N 4. – P. 182-185. – ISSN 1990-5378. – (In Russian).
  18. Volkov, A.V. A method for the diffractive microrelief forming using the layered photoresist growth / A.V. Volkov, N.L. Kazanskiy, O.Ju. Moiseev, V.A. Soifer // Optics and Lasers in Engineering. – 1998. – Vol. 29, N 4-5. – P. 281-288.
  19. Pavelyev, V.S. Formation of diffractive microrelief on diamond film surface / V.S. Pavelyev, S.A. Borodin, N.L. Kazanskiy, G.F. Kostyuk, A.V. Volkov // Optics & Laser Technology. – 2007. – Vol. 39, N 6. – P. 1234-1238.
  20. Bezus, E.A. Evanescent-wave interferometric nanoscale photolithography using guided-mode resonant gratings / E.A. Bezus, L.L. Doskolovich, N.L. Kazanskiy // Microelectronic Engineering. – 2011. – Vol. 88, N 2. – P. 170-174.
  21. Kazanskiy, N.L. Research & education center of diffractive optics // Proceedings of SPIE. – 2012. – V. 8410. – P. 84100R. – DOI: 10.1117/12.923233.
  22. Kazansky, N.L. A research complex for solving computer optics problems / N.L. Kazanskiy // Computer Optics. – 2006. – N 29. – P. 58-77. – ISSN 0134-2452. – (In Russian).
  23. Doskolovich, L.L. Focusators for laser-branding / L.L. Doskolovich, N.L. Kazanskiy, S.I. Kharitonov, G.V. Usplenjev // Optics and Lasers in Engineering. – 1991. – Vol. 15, № 5. – P. 311-322.
  24. Kazanskiy, N.L. Computer-aided design of diffractive optical elements / N.L. Kazanskiy, V.V. Kotlyar, V.A. Soifer // Optical Engineering. – 1994. – Vol. 33, № 10. – P. 3156-3166.
  25. Doskolovich, L.L. A method of designing diffractive optical elements focusing into plane areas / L.L. Doskolovich, N.L. Kazansky, S.I. Kharitonov, V.A. Soifer // Journal of Modern Optics. – 1996. – Vol. 43, № 7. – P. 1423-1433.
  26. Golovashkin, D.L. Solving Diffractive Optics Problem using Graphics Processing Units / D.L. Golovashkin, N.L. Kazanskiy // Optical Memory and Neural Networks (Information Optics). – 2011. – Vol. 20, № 2. – P. 85–89.
  27. Khonina, S.N. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system / S.N. Khonina, N.L. Kazanskiy, S.G. Volotovsky // Journal of Modern Optics. – 2011. – Vol. 58, № 9. – P. 748–760.
  28. Doskolovich, L.L. Investigation of optical systems control high energy transfer / L.L. Doskolovich, N.L. Kazanskiy, V.I. Mordasov, S.P. Murzin, S.I. Kharitonov // Computer Optics. – 2002. – N 23. – P. 40-43. – ISSN 0134-2452. – (In Russian).
  29. Murzin, S.P. Investigation of temperature fields in structural steel by laser beam formed focusators / S.P. Murzin, E.L. Osetrov  // Computer Optics. – 2007. – Vol. 31, N 3. – P. 59-62. – ISSN 0134-2452. – (In Russian).
  30. Murzin, S.P. Increasing the efficiency of laser treatment of materials using elements of computer optics / S.P. Murzin // Journal of Advanced Materials. – 2003. – Vol. 10, N 2. – P. 181-185. – ISSN 0969-6849.
  31. Kazanskiy, N.L. Synthesis of nanoporous structures in metallic materials under laser action / N.L. Kazanskiy, S.P. Murzin, Ye.L. Osetrov, V.I. Tregub // Optics and Lasers in Engineering. – 2011. – Vol. 49, N 11. – P. 1264-1267.
  32. Murzin, S.P. Exposure to laser radiation for creation of metal materials nanoporous structures / S.P. Murzin // Optics & Laser Technology. – 2013. – Vol. 48. – P. 509-512.
  33. Kazanskiy, N.L. Application focusators radiation for formation of solid crystalline nanoporous materials structures / N.L. Kazanskiy, S.P. Murzin, V.I. Tregub, A.V. Mezhenin // Computer Optics. – 2007. – Vol. 31, N 2. – P. 48-51. – ISSN 0134-2452. – (In Russian).
  34. Kazanskiy, N.L. Formation of the laser radiation to create nanoscale porous materials structures / N.L. Kazanskiy, S.P. Murzin, A.V. Mezhenin, E.L. Osetrov // Computer Optics. – 2008. – Vol. 32, N 3. – P. 246-248. – ISSN 0134-2452. – (In Russian).
  35. Kazanskiy, N.L. Optical system for realization selective laser sublimation of metal alloys components / N.L. Kazanskiy, S.P. Murzin, V.I. Tregub // Computer Optics. – 2010. – Vol. 34, N 4. – P. 481-486. – ISSN 0134-2452. – (In Russian).

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20