Spatial integration of optical beams using phase-shifted bragg grating
N.V. Golovastikov, D.A. Bykov, L.L. Doskolovich

 

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

PDF, 429 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-3-372-376

Pages: 372-376.

Abstract:
The diffraction of a 2D optical beam upon a multilayer Bragg structure is considered. It is shown that phase-shifted Bragg grating can perform spatial integration in transmission of a 2D incident beam in the vicinity of the angular frequency associated with the excitation of a quasi-guided mode confined to the defect layer. The integration is fulfilled with an exponential weight function which fades away as the quality factor of the resonance increases. Beam propagation simulation results are in close agreement with provided theoretical description.

Key words:
phase-shifted Bragg grating, resonance, all-optical integration.

References:

  1. Slavík, R. Ultrafast all-optical differentiators / R. Slavík, Y. Park, M. Kulishov, R. Morandotti, J. Azaña // Optics Express. – 2006. – V. 14(22). – P. 10699-10707.
  2. Kulishov, M. Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings / M. Kulishov, J. Azaña // Optics Express. – 2007. – V. 15(10). – P. 6152-6166.
  3. Berger, N.K. Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating / N.K. Berger, B. Levit, B. Fischer, M. Kulishov, D.V. Plant, J. Azaña // Optics Express. – 2007. – V. 15(2). – P. 371-381.
  4. Ngo, N.Q. On the interrelations between an optical differentiator and an optical Hilbert transformer / N.Q. Ngo, Y. Song // Optics Letters. – 2011. –V. 36(6). – P. 915-917.
  5. Ngo, N.Q. Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission / N.Q. Ngo // Optics Letters. – 2007. – V. 32(20). – P. 3020-3022.
  6. Doskolovich, L.L. Spatial differentiation of optical beams using phase-shifted Bragg grating / L.L. Doskolovich, D.A. Bykov, E.A. Bezus, V.A. Soifer // Optics Letters. – 2014. – V. 39(5). – P. 1278-1281.
  7. Popov, E. Theoretical Study of the anomalies of coated dielectric gratings / E. Popov, L. Mashev, D. Maystre // Optica Acta. – 1986. – V. 33(5). – P. 607-619.
  8. Neviere, M. Electromagnetic resonances in linear and nonlinear optics: phenomenological study of grating behavior through the poles and zeros of the scattering operator / M. Neviere, E. Popov, R. Reinisch // Journal of the Optical Society of America A. – 1995. – V. 12(3). – P. 513-523.
  9. Bykov, D.A. Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals / D.A. Bykov, L.L. Doskolovich, V.A. Soifer // Journal of the Optical Society of America A. – 2012. – V. 29(8). – P. 1734-1740.
  10. Moharam, G.M. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach / G.M. Moharam, T.K. Gay­lord, Drew A. Pommet, Eric B. Grann // Journal of the Optical Society of America A. – 1995. – V. 12(5). – P. 1077-1086.
  11. Bykov, D.A. Numerical methods for calculating poles of the scattering matrix with applications in grating theory / D.A. Bykov, L.L. Doskolovich // Journal of Lightwave Technology. – 2013. – V. 31(5). – P. 793-801.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20