Polarizing and focusing properties of reflective fresnel zone plate
S.S. Stafeev, V.V. Kotlyar

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

PDF, 698 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-3-456-462

Pages: 456-462.

Abstract:
Polarizing and focusing properties of binary Fresnel zone plate (FZP) designed for x-ray was investigated experimentally in visible range for wavelengths 405 nm, 445 nm, and 633 nm. It was shown that peripheral FZP zones rotate the direction of polarization of linearly-polarized incident light on angle equal to doubled angle between incident polarization and relief direction. Illuminated by red and blue linearly polarized light FZP forms 3 focal spots, located on distances that decrease with wavelength decreasing. Minimal focal spot on distance of 105 um above the surface was elliptical and has maximal intensity 9 times larger than the intensity of incident light, and half maximum diameter of diffractive limit of our optical system (2 of wavelength). Peripheral part of FZP forms diffractive limited focal point on distance of 2.8 um that has diameter 9 of wavelength.

Key words:
reflective Fresnel zone plate, polarization rotation, multifocal lens.

References:

  1. Methods for Computer design of diffractive optical elements / V.A. Soifer, V.V. Kotlyar, N.L. Kazanskiy, L.L. Doskolovich, S.I. Kharitonov, S.N. Khonina, V.S. Pavelyev, R.V. Skidanov, A.V. Volkov, D.L. Golovashkin, V.S. Solovyev, G.V. Uspleny­ev. – ed. by V.A. Soifer. – New York: John Wiley & Sons, Inc., 2002. – 765 p.
  2. Shiono, T. Reflection micro-Fresnel lenses and their use in an integrated focus sensor / T. Shiono, M. Kitagawa, K. Set­sune, T. Mitsuyu // Applied Optics. – 1989. – Vol. 28(15). – P. 3434-3442.
  3. Shiono, T. Blazed reflection micro-Fresnel lenses fabricated by electron-beam writing and dry development / T. Shiono, K. Setsune // Optics Letters. – 1990. – Vol. 15(1). – P. 84-86.
  4. Cheng, K.-T. Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals / K.-T. Cheng, C.-K. Liu, C.-L. Ting, A.Y.G. Fuh // Optics Express. – 2007. – Vol. 15(21). – P. 14078-14085.
  5. Lu, F. Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings / F. Lu, F.G. Sedgwick, V. Karagodsky, C. Chase, C.J. Chang-Hasnain // Optics Express. – 2010. – Vol. 18(12). – P. 12606-12614.
  6. Feng, Y. Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications / Y. Feng, M. Fe­ser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, W. Yun // Journal of Vacuum Science & Technology B. – 2007. – Vol. 25(6). – P. 2004-2007.
  7. Hofsten, O. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate / O. von Hofsten, M. Bertilson, J. Reinspach, A. Holmberg, H.M. Hertz, U. Vogt // Optics Letters. – 2009. – Vol. 34(17). – P. 2631-2633.
  8. Kotlyar, V.V. Zone plate on a film for hard x-ray radiation / V.V. Kotlyar, A.G. Nalimov, M.I. Shanina, V.A. Soifer, L. O'Faolain // Computer Optics. – 2011. – Vol. 35(1). – P. 36-41. – (In Russian).
  9. Kotlyar, V.V. Focusing properties of a zone plate investigation for a hard x-ray / V.V. Kotlyar, A.G. Nalimov, M.I. Sha­nina, V.A. Soifer, L. O’Faolain, E.V. Mineev, I.V. Ya­kimchuk, V.E. Asadchikov // Computer Optics. – 2012. – Vol. 36 (1). – P. 65-71.
  10. Kotlyar, V.V. Design of diffractive optical elements modulating polarization / V.V. Kotlyar, O.K. Zalyalov // Optik. – 1992. – Vol. 103(3). – P. 125-130.
  11. Nalimov, A.G. Reflected four-zones subwavelenghth mictooptics element for polarization conversion from linear to radial / A.G. Nalimov, L. O'Faolain, S.S. Stafeev, M.I. Sha­nina, V.V. Kotlyar // Computer Optics. – 2014. – Vol. 38(2). – P. 229-236.
  12. Bomzon, Z. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings / Z. Bomzon, V. Kleiner, E. Hasman // Optics Letters. – 2001. – Vol. 26(18). – P. 1424-1426.
  13. Ghadyani, Z. Concentric ring metal grating for generating radially polarized light / Z. Ghadyani, I. Vartiainen, I. Harder, W. Iff, A. Berger, N. Lindlein, M. Kuittinen // Applied Optics. – 2011. – Vol. 50(16). – P. 2451-2457.
  14. Dorn, R. Sharper focus for a radially polarized light beam / R. Dorn, S. Quabis, G. Leuchs // Physical Review Letters. – 2003. – Vol. 91(23). – P. 233901.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20