Method of composite nanomaterials synthesis under metal/oxide pulse-periodic laser treatment
S.P. Murzin

Samara State Aerospace University

PDF, 442 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-3-469-475

Pages: 469-475.

Abstract:
A method of composite nanomaterials synthesis under metal/oxide pulse-periodic laser treatment has been developed on the example of a metal-semiconductor nanocomposite ZnO/Cu. A new approach to the creation of structures of layered composite nanomaterials based on zinc oxide nanofibers is implemented. For the first time for such materials synthesis, heating laser controlled distribution of power density has been used. Air heating of foil brass by pulse-periodic laser treatment intensifies the oxidation of the surface material. Preferable formation of ZnO is caused by a higher oxidation speed of zinc than copper and the zinc diffusion to the surface, as well. The length of zinc oxide nanofibers in the implementation of the selected modes of the laser treatment is less than 5 micrometers.

Key words:
composite nanomaterial, synthesis, laser treatment, brass, surface, oxidation, zinc.

References:

  1. Huang, M.H. Room-temperature ultraviolet nanowire nanolasers / M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang // Science. – 2001. – Vol. 292. – P. 1897-1899.
  2. Whang, D. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems/ D. Whang, S. Jin, Y. Wu, C.M. Lieber // Nano Letters. – 2003. – Vol. 3, № 9. – P. 1255-1259.
  3. Luo, X.L. Application of nanoparticles in electrochemical sensors and biosensors / X.L. Luo, A. Morrin, A.J. Killard, M.R. Smyth // Electroanalysis. – 2006. – Vol. 18, № 4. – P. 319-326.
  4. Li, Y. Nanowire electronic and optoelectronic devices / Y. Li, F. Qian, J. Xiang, C.M. Lieber // Materials Today (Oxford, United Kingdom). – 2006. – Vol. 9, № 10. – P. 18-27.
  5. Braunovich, M. Electrical contacts. Fundamentals, applications and technology / M. Braunovich, V. Konchits, N. Myshkin. – London, New York: CRC Press, 2006. – 639 p.
  6. Yang, C. ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications / C. Yang, C. Xu, X. Wang // Langmuir. – 2012. – Vol. 28, №9. – P. 4580-4585.
  7. Cheng, A.-J. Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication / A.-J. Cheng, Y. Tzeng, Y. Zhou, M. Park, T.-h. Wu, C. Shannon, D. Wang, W. Lee // Applied Physics Letters. – 2008. – Vol. 92, № 9. – P. 092113.
  8. Chen, Y.F. Morphology evolution of ZnO(0001) surface during plasma-assisted molecular-beam epitaxy / Y.F. Chen, H.J. Ko, S.K. Hong, T. Yao, Y. Segawa // Applied Physics Letters. – 2002. – Vol. 80, № 8. – P. 1358-1360.
  9. Wang, X.D. Large-scale fabrication of ordered nanobowl arrays / X.D. Wang, E. Graugnard, J.S. King, Z.L. Wang, C.J. Summers // Nano Letters. – 2004. – Vol. 4, № 11. – P. 2223-2226.
  10. Martensson, T. Nanowire arrays de?ned by nanoimprint lithography / T. Martensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson // Nano Letters. – 2004. – Vol. 4, № 4. – P. 699-702.
  11. Lee, Y.C. Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching / Y.C. Lee, C.Y.J. Chiu // Journal of Micromechanics and Microengineering. – 2008. – Vol. 18, № 7. – P. 075013.
  12. Kazanskiy, N.L. Synthesis of nanoporous structures in metallic materials under laser action / N.L. Kazanskiy, S.P. Murzin, Ye.L. Osetrov, V.I. Tregub // Optics and Lasers in Engineering. – 2011. – Vol. 49, № 11. – P. 1264-1267.
  13. Murzin, S.P. Exposure to laser radiation for creation of metal materials nanoporous structures / S.P. Murzin // Optics & Laser Technology. – 2013. – Vol. 48. – P. 509-512.
  14. Gertsriken, D.S. Determining the duration of mass transfer and the temperature of metal subjected to pulsed deformation / D.S. Gertsriken, A.I. Ignatenko, V.F. Mazanko, O.A. Mironova, Yu.V. Fal'chenko, G.K. Kharchenko // The Physics of Metals and Metallography. – 2005. – Vol. 99, № 2. – P. 187-193.
  15. Pogorelov, A.E. Mass transfer mechanism in real crystals by pulsed laser irradiation / A.E. Pogorelov, K.P. Ryaboshapka, A.F. Zhuravlyov // Journal of Applied Physics. – 2002. – Vol. 92, № 10. – P. 5766-5771.
  16. Murzin, S.P. The research of intensification’s expedients for nanoporous structures formation in metal materials by the selective laser sublimation of alloy’s components / S.P. Murzin // Computer Optics. – 2011. – Vol. 35, № 2. – P. 175-179. – ISSN 0134-2452. – (In Russian).
  17. Murzin, S.P. Thermocycling with pulse-periodic laser action for formation of nanoporous structure in metal material / S.P. Murzin, V.I. Tregub, E.V. Shokova, N.V. Tregub // Computer Optics. – 2013. – Vol. 37, № 1. – P. 99-104. – ISSN 0134-2452.
  18. Murzin, S.P. Application of radiation focusators for creation of nanoporous metal materials with high specific surface area by laser action / S.P. Murzin, V.I. Tregub, A.A. Melnikov, N.V. Tregub // Computer Optics. – 2013. – Vol. 37, № 2. – P. 226-232. – ISSN 0134-2452.
  19. Murzin, S.P. Synthesis of metal materials nanoporous structures with cyclic elasto-plastic deformation under laser treatment using radiation focusators // Computer Optics. – 2014. – Vol. 38, № 2. – P. 249-255. – ISSN 0134-2452.
  20. Kazanskiy, N.L. Computer-aided design of diffractive optical elements / N.L. Kazanskiy, V.V. Kotlyar, V.A. Soifer // Optical Engineering. – 1994. – Vol. 33, № 10. – P. 3156-3166.
  21. Doskolovich, L.L. Analysis of quasiperiodic and geometric optical solutions of the problem of focusing into an axial segment / L.L. Doskolovich, N.L. Kazanskiy, V.A. Soifer, A.Ye. Tzaregorodtzev // Optic – International Journal for Light and Electron Optics. – 1995. – Vol. 101, № 2. – P. 37-41.
  22. Doskolovich, L.L. A method of designing diffractive optical elements focusing into plane areas / L.L. Doskolovich, N.L. Kazanskiy, S.I. Kharitonov, V.A. Soifer // Journal of Modern Optics. – 1996. – Vol. 43, № 7. – P. 1423-1433.
  23. Kazanskiy, N.L. Research & education center of diffractive optics // Proceedings of SPIE. – 2012. – Vol. 8410. – P. 84100R. – DOI: 10.1117/12.923233.
  24. Volkov, A.V. A method for the diffractive microrelief forming using the layered photoresist growth / A.V. Volkov, N.L. Kazanskiy, O.Ju. Moiseev, V.A. Soifer // Optics and Lasers in Engineering. – 1998. – Vol. 29, N 4-5. – P. 281-288.
  25. Golovashkin, D.L. Solving diffractive optics problem using graphics processing units / D.L. Golovashkin, N.L. Kazanskiy // Optical Memory and Neural Networks (Information Optics). – 2011. – Vol. 20, № 2. – P. 85–89.
  26. Khonina, S.N. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system / S.N. Khonina, N.L. Kazanskiy, S.G. Volotovsky // Journal of Modern Optics. – 2011. – Vol. 58, № 9. – P. 748–760.
  27. Kazanskiy, N.L. Optical system for realization selective laser sublimation of metal alloys components / N.L. Kazanskiy, S.P. Murzin, V.I. Tregub // Computer Optics. – 2010. – Vol. 34, N 4. – P. 481-486. – ISSN 0134-2452. – (In Russian).
  28. Murzin, S.P. Increasing the efficiency of laser treatment of materials using elements of computer optics / S.P. Murzin // Journal of Advanced Materials. – 2003. – Vol. 10. № 2. – P. 181-185.
  29. Murzin, S.P. Nanoporous structure formation in metal materials by cyclic elastoplastic deformation with laser action / S.P. Murzin, V.I. Tregub, E.L. Osetrov, A.M. Nikiforov // Proceedings of Samara RAS Scientific Centre. – 2010. – Vol. 12, N 4. – P. 182-185. – ISSN 1990-5378. – (In Russian).
  30. Murzin, S.P. The research of intensification’s expedients for nanoporous structures formation in metal materials by the selective laser sublimation of alloy’s components / S.P. Murzin // Computer Optics. – 2011. – Vol. 35, N 2. – P. 175-179. – ISSN 0134-2452. – (In Russian).
  31. Tyurin, A.G. Thermodynamics of chemical and electrochemical stability of brasses / A.G. Tyurin, A.A. Shrainer // Protection of Metals and Physical Chemistry of Surfaces. – 2007. – Vol. 43, № 3. – P. 291-297. – DOI: 10.1134/S0033173207030162.
  32. Fan, H.J. Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals / H.J. Fan, R. Scholz, F.M. Kolb, M. Zacharias // Applied Physics Letters. – 2004. – Vol. 85. – P. 4142-4144.
  33. Dang, H.Y. The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres / H.Y. Dang, J. Wang, S.S. Fan // Nanotechnology. – 2003. – Vol. 14. – P. 738-741.
  34. Wen, X. ZnO nanobelt arrays grown directly from and on zinc substrates: synthesis, characterization, and applications / X. Wen, Y. Fang, Q. Pang, C. Yang, J. Wang, K. Ge, K.S. Wong, S.J. Yang // Journal of Physical Chemistry B. – 2005. – Vol. 109. – P. 15303-15308.
  35. Zhu, Y. Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air / Y. Zhu, C.-H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, J.T.-L. Thong // Advanced Functional Materials. – 2006. – Vol. 16. – P. 2415-2422.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20