(38-4) 07 * <<>> * Russian * English * Content * All Issues

Phase modulation and refraction of surface plasmon polaritons with parasitic scattering suppression
E.A. Bezus, L.L. Doskolovich

 

Samara State Aerospace University
P.N. Lebedev Physical Institute of RAS, Samara Branch

PDF, 197 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-4-623-628

Pages: 623-628.

Abstract:
It is shown theoretically and numerically that a planar structure consisting of two dielectric layers made of isotropic materials can be used to decrease surface plasmon polariton parasitic scattering an arbitrary incidence angle. Average scattering losses decrease by an order of magnitude down to 0.015. Phase modulation and refraction of surface plasmon polaritons with the scattering suppression are well described by an analytical model based on the Fresnel equations. The proposed approach can be used for the design of plasmonic lenses, reflectors, plasmonic crystals and resonators of plasmonic lasers.

Key words:
surface plasmon polariton, plasmonics, phase modulation, refraction, parasitic scattering, diffraction, Fourier modal method.

Citation:
Bezus EA, Doskolovich LL. Phase modulation and refraction of surface plasmon polaritons with parasitic scattering suppression. Computer Optics 2014; 38(4): 623-628. DOI: 10.18287/0134-2452-2014-38-4-623-628.

References:

  1. Ma, R.-M. Plasmon lasers: coherent light source at molecular scales / R.-M. Ma, R.F. Oulton, V.J. Sorger and X. Zhang // Laser & Photonics Reviews. – 2013. – Vol. 7. – P. 1-21.
  2. Xie, Z. Plasmonic Nanolithography: A Review / Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu and Q. Sun // Plasmonics. – 2011. – Vol. 6. – P. 565-580.
  3. Han, Z. Radiation guiding with surface plasmon polaritons / Z. Han and S.I. Bozhevolnyi // Reports on Progress in Physics. – 2013. – Vol. 76. – 016402.
  4. Atwater, H.A. Plasmonics for improved photovoltaic devices / H.A. Atwater and A. Polman // Nature Materials. – 2010. – Vol. 9. – P. 205-213.
  5. Oulton, R.F. Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities / R.F. Oulton, D.F.P. Pile, Y. Liu and X. Zhang // Physical Review B. – 2007. – Vol. 76. – 035408.
  6. Elser, J. Scattering-Free Plasmonic Optics with Anisotropic Metamaterials / J. Elser and V.A. Podolskiy // Physical Review Letters. – 2008. – Vol. 100. – 066402.
  7. Zhong-Tuan, M. Pure Reflection and Refraction of a Surface Polariton by a Matched Waveguide Structure / M. Zhong-Tuan, W. Pei, C. Yong, T. Hong-Gao and M. Hai // Chinese Physics Letters. – 2006. – Vol. 23. – P. 2545-2548.
  8. Thongrattanasiri, S. Quasi-planar optics: computing light propagation and scattering in planar waveguide arrays / S. Thongrattanasiri, J. Elser and V.A. Podolskiy // Journal of the Optical Society of America B. – 2009. – Vol. 26. – P. B102-B110.
  9. Novitsky, A.V. Conversion from surface wave to surface wave on reflection / A.V. Novitsky // Journal of Optics. – 2010. – Vol. 12. – 115705.
  10. Bezus, E.A. Scattering suppression in plasmonic optics using a simple two-layer dielectric structure / E.A. Bezus, L.L. Doskolovich and N.L. Kazanskiy // Applied Physics Letters. – 2011. – Vol. 98. – 221108.
  11. Bezus, E.A. Scattering in elements of plasmon optics suppressed by two-layer dielectric structures / E.A. Bezus, L.L. Doskolovich, N.L. Kazanskiy and V.A. Soifer // Technical Physics Letters. – 2011. – Vol. 37. – P. 1091-1095.
  12. Salandrino, A. Airy plasmon: a nondiffracting surface wave / A. Salandrino and D.N. Christodoulides // Optics Letters. – 2010. – Vol. 35. – P. 2082-2084.
  13. Garcia-Ortiz, C.E. Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles / C.E. Garcia-Ortiz, V. Coello, Z. Han and S.I. Bozhevolnyi // Optics Letters. – 2013. – Vol. 38. – P. 905-907.
  14. Avrutsky, I. Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap / I. Avrutsky, R. Soref and W. Buchwald // Optics Express. – 2010. – Vol. 18. – P. 348-363.
  15. Sannikov, D.G. The surface mode of a dielectric waveguide with metal substrate / D.G. Sannikov and D.I. Sementsov // Technical Physics Letters. – 2003. – Vol. 29. – P. 353-356.
  16. Johnson, P.B. Optical Constants of the Noble Metals / P.B. Johnson and R.W. Christy // Physical Review B. – 1972. – Vol. 6. – P. 4370-4379.
  17. RefractiveIndex.INFO – Refractive index database [Электронный ресурс]. – http://refractiveindex.info (дата обращения – 13.11.2014).
  18. Zia, R. Dielectric waveguide model for guided surface polaritons / R. Zia, A. Chandran and M.L. Brongersma // Optics Letters. – 2005. – Vol. 30. – P. 1473-1475.
  19. Moharam, M.G. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings / M.G. Moharam, E.B. Grann, D.A. Pommet and T.K. Gaylord // Journal of the Optical Society of America A. – 1995. – Vol. 12. – P. 1068-1076.
  20. Li, L. Use of Fourier series in the analysis of discontinuous periodic structures / L. Li // Journal of the Optical Society of America A. – 1996. – Vol. 13. – P. 1870-1876.
  21. Silberstein, E. Use of grating theories in integrated optics / E. Silberstein, P. Lalanne, J.-P. Hugonin and Q. Cao // Journal of the Optical Society of America A. – 2001. – Vol. 18. – P. 2865-2875.
  22. Bezus, E.A. Design of diffractive lenses for focusing surface plasmons / E.A. Bezus, L.L. Doskolovich, N.L. Ka­zanskiy, V.A. Soifer and S.I. Kharitonov // Journal of Optics. – 2010. – Vol. 12. – 015001.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20