(38-4) 18 * <<>> * Russian * English * Content * All Issues

Hartmann wavefront sensor based on multielement amplitude masks with apodized apertures
A.G. Poleshchuk, A.G. Sedukhin, V.I. Trunov,V.G. Maksimov

 

Institute of Automation and Electrometry, SB RAS, Novosibirsk,
Institute of Laser Physics SB RAS, Novosibirsk,
Institute of Monitoring of Climatic and Ecological Systems, SB RAS, Tomsk

PDF, 1319 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-4-695-703

Pages: 695-703.

Abstract:
A theoretical and experimental study of a Hartmann sensor intended for measurements of light beam wavefronts and implemented on the basis of multielement amplitude masks with apodized apertures is presented. We perform a comparative analysis of the optical performance of the amplitude masks with hard-edge circular apertures and half-tone masks (HTMs) with apodized apertures forming smooth fast decaying optical responses on a photosensor. A technique for fabricating chromium HTMs is developed, which is based on laser thermochemical method of recording. This technique includes two main stages: first – the exposure of a chromium film by a focused laser beam, whose power is varied in a smooth and nonlinear manner versus the required density of HTM’s structure, and second – the developing of the film in a selective etcher. Specimens of HTMs consisting of 64×64 Gaussian apertures were fabricated and applied in a modified Hartmann sensor to measure the wavefront of powerful laser systems.

Key words:
wavefront sensor, Hartmann sensor, apodization, continuous-tone laser recording.

Citation:
Poleshchuk AG, Sedukhin AG, Trunov VI, Maksimov V.G. Hartmann wavefront sensor based on multielement amplitude masks with apodized apertures. Computer Optics 2014; 38(4): 695-703. DOI: 10.18287/0134-2452-2014-38-4-695-703.

References:

  1. Optical shop testing. / ed. by D. Malacara. – Moscow: “Mashinostroenie” Publisher, 1989. – 398 p. – (In Russian).
  2. Platt, B. History and principles of Shack-Hartmann wavefront sensing / B. Platt and R. Shack // Journal of Refractive Surgery. – 2001. –Vol. 17.
  3. Frolov, S.A. Influence of spatial beam inhomogeneities on the parameters of a petawatt laser system based on multi-stage parametric amplification / S.А. Frolov, V.I. Trunov, E.V. Pestryakov, V.E. Leshchenko // Quantum Electronics. – 2013. – Vol. 43. – P. 481-488. – (In Russian).
  4. Laude, V. Hartmann wave-front scanner / V. Laude, S. Olivier, C. Dirson and J.-P. Huignard // Optics Letters. – 1999. – Vol. 24. – P. 1796-1798.
  5. Poleshchuk, А.G. Localized grid testing of the wavefronts of high power laser systems / А.G. Poloshchuk, А.G. Se­dukhin, V.N. Khomutov, R.V. Shimanskiy, V.I. Trunov, S.А. Frolov // Proceedings of VII International conference “Fundamental problems of optics – 2012”. – Saint-Peters­burg, 2012. – P. 430-431. – (In Russian).
  6. Pfund, A.J. Dynamic range expansion of a Shack–Hartmann sensor by use of a modified unwrapping algorithm / A.J. Pfund, N. Lindlein and J. Schwider // Optics Letters. – 1998. – Vol. 23. – P. 995-997.
  7. Chernyshov, A. Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts / A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke and J. Pfund // Applied Optics. – 2005. – Vol. 44. – P. 6419–6425.
  8. Brooks, A.F. Ultra-sensitive wavefront measurement using a Hartmann sensor / A.F. Brooks, T.-L. Kelly, P.J. Veitch and J. Munch // Optics Express. – 2007. – Vol. 15. – P. 10370-10375.
  9. Poteomkin, A. Use of scanning Hartmann sensor for measu­rement of thermal lensing in TGG crystal / A. Poteomkin, N. Andreev, I. Ivanov, E. Khazanov, A. Shaykin, V. Zele­nogorsky // Proceedings of SPIE. – 2003. – Vol. 4970. – P. 10-20.
  10. Goodman, J.W. Introduction to Fourier Optics / J.W. Goodman. – NY: The McGraw-Hill Companies, Inc., 1996. – 441 p.
  11. Sedukhin, А.G. Numerical evaluation of interferometric effects in Shack-Hartmann wavefront sensors / А.G. Sedukhin // Proceedings of X International conference “Applied Optics – 2012”. – Saint-Petersburg, 2012. – P. 57-61. – (In Russian).
  12. Metev, S. Thermochemical action of laser radiation on thin metal films / S. Metev, S. Savtchenko, K. Stamenov, V. Veiko, G. Kotov, G. Shandibina // – IEEE J. Quant. Electr. – 1981, – V. 17, – P. 2004–2007.
  13. Koronkevich, V.P. Laser thermochemical technology for synthesizing optical diffraction elements utilizing chromium films / V.P. Koronkevich, А.G. Poleshchuk, Е.G. Churin, Yu.I. Yurlov // Soviet Journal of Quantum Electronics. – 1985. – Vol. 15. – P. 494-497.
    Examination of features of multybeam laser thermochemical recording of diffraction microstructures / V.P. Veiko, D.A. Sinev, E.A. Shakhno, A.G. Poleshchuk, A.R. Sametov, A.G. Sedukhin // Computer Optics. – 2012. – Vol. 34(4). – P. 562-569. – (In Russian).
  14. Poleshchuk, А.G. Shack-Hartmann sensor as part of a system for testing high power laser beams / А.G. Poleshuk, А.G. Sedukhin, V.G. Maksimov, V.А. Tartakovskiy, V.I. Tru­nov // Proceedings of Scientific Congress “Interexpo Geo-Siberia 2013”, Conference “Siboptika 2013”. – Novosibirsk, 2013. – P. 93-97. – (In Russian).

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20