(38-4) 23 * <<>> * Russian * English * Content * All Issues

Method for determination of the principal modes in a few-mode optical fiber using a multibranch doe
V.S. Lyubopytov, R.V. Kutluyarov, V.Kh. Bagmanov, A.Kh. Sultanov

 

Ufa State Aviation Technical University

PDF, 890 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-4-727-736

Pages: 727-736.

Abstract:
We propose a method intended for reconstructing a fiber propagation matrix in few-mode regime and determination of the corresponding principal modes. The method is based on the idea of extending the Jones Matrix Eigenanalysis (JME) technique, which provides.the determination of both the propagation matrix and the principal states of polarization in a single-mode fiber, to the basis of spatial modes in a few-mode fiber. We propose that a multibranch diffractive optical element should be used as a correlation filter, which can be implemented by means of a spatial light modulator (SLM). The efficiency of the proposed method is numerically verified for a stepped-index few-mode fiber in the strong coupling regime.

Key words:
mode coupling, modal dispersion, diffractive optical element, mode division multiplexing, principal modes.

Citation:
Lyubopytov VS, Kutluyarov RV, Bagmanov VK, Sultanov AK. Method for determination of the principal modes in a few-mode optical fiber using a multibranch doe. Computer Optics 2014; 38(4): 727-736. DOI: 10.18287/0134-2452-2014-38-4-727-736.

References:

  1. Ellis, A.D. The nonlinear Shannon limit and the need for new fibres / A.D. Ellis // Proceedings of SPIE. – 2012. – Vol. 8434, Nonlinear Optics and Applications VI. – P. 84340H.
  2. Sorokina, M.A. Regeneration limit of classical Shannon capacity / M.A. Sorokina, S.K. Turitsyn // Nature Communications. – 2014. – Vol. 5:3861.
  3. Berdague, S. Mode division multiplexing in optical fibers / S. Berdague, P. Facq // Applied Optics. – 1982. – Vol. 21. – P. 1950-1955.
  4. Soifer, V.A. Laser beam mode selection by computer-gene­rated holograms / V.A. Soifer, M.A. Golub. – London: CRC Press, 1994. – 224 p.
  5. Khonina, S.N. Optical Vortices in a Fiber: Mode Division Multiplexing and Multimode Self-Imaging / S.N. Khonina, N.L. Kazanskiy and V.A. Soifer //Recent Progress in Optical Fiber Research; ed. by Dr Moh. Yasin. – InTech, 2012.
  6. Wang, J. Multimode Communications Using Orbital Angular Momentum / J. Wang, M.J. Padgett, S. Ramachandran, M.P.J. Lavery, H. Huang, Y. Yue, Y. Yan, N. Bozinovic, S.E. Golowich and A.E. Willner // Optical Fiber Telecommunications VIB: Systems and Networks / I.P. Kaminow, T. Li and A.E. Willner, Eds. – Elsevier, 2013.
  7. Garitchev, V.P. Experimental investigation of mode coupling in a multimode graded-index fiber, caused by periodic microbends using computer-generated spatial filters / V.P. Garitchev, M.A. Golub, S.V. Karpeev, S.G. Krivoshly­kov, N.I. Petrov, I.N. Sissakian, V.A. Soifer, W. Hauben­reisser, J.U. Jahn, R. Willsch // Optics Communication, 1985. – Vol. 55, Issue 6. – P. 403-405.
  8. Marcuse, D. Theory of Dielectric Optical Waveguides / D. Marcuse. – Academic Press, 1991. – 380 p.
  9. Ho, K.-P. Mode Coupling and its Impact on Spatially Multiplexed Systems / K.-P. Ho and J.M. Kahn // Optical Fiber Telecommunications VIB: Systems and Networks / I.P. Ka­minow, T. Li and A.E. Willner, Eds. – Elsevier, 2013.
  10. Fan, Sh. Principal modes in multimode waveguides / Sh. Fan and J.M. Kahn // Optics Letters. – 2005. – Vol. 30(2). – P. 135-137.
  11. Poole, C.D. Phenomenological Approach to Polarisation Dispersion in Long Single-mode Fibres / C.D. Poole, R.E. Wagner // Electronics Letters. – 1986. – Vol. 22(19). – P. 1029-1030.
  12. Gordon, J.P. PMD fundamentals: Polarization mode dispersion in optical fibers / J.P. Gordon and H. Kogelnik // Proceedings of the National Academy of Sciences of the United States of America. – 2000. – Vol. 97(9). – P. 4541-4550.
  13. Kogelnik, H. Polarization-Mode Dispersion / H. Kogelnik, R.M. Jopson, L.E. Nelson // Optical Fiber Telecommunications IVB: Systems and Impairments. – Elsevier, 2002.
  14. Franz, B. Experimental evaluation of principal mode groups as high-speed transmission channels in spatial multiplex systems / B. Franz, H. Bülow // IEEE Photonics Technology Letters. – 2012. –Vol. 24(16). – P. 1363-1365.
  15. Juarez, A.A. Perspectives of principal mode transmission in mode-division-multiplex operation / A.A. Juarez, C.A. Bun­ge, S. Warm, and K. Petermann // Optics Express. – 2012. – V. 20(13). – P. 13810-13823.
  16. Antonelly, C. Stokes-space analysis of modal dispersion in fibers with multiple mode transmission / C. Antonelly, A. Mecozzi, M. Shtaif, and P.J. Winzer // Optics Express. – 2012. – Vol. 20(11). – P. 11718-11733.
  17. Heffner, B.L. Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis / B.L. Heffner // IEEE Photonics Technology Letters. – 1992. – Vol. 4(9). – P. 1066-1069.
  18. Ryf, R. Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6×6 MIMO Processing / R. Ryf, S. Randel, A.H. Gnauck, C. Bolle, A. Sierra, S. Mum­taz, M. Esmaeelpour, E.C. Burrows, R.J. Essiambre, P.J. Winzer, D.W. Peckham, A.H. McCurdy, and R. Ling­le, Jr. // Journal of Lightwave Technology. – 2012. – Vol. 30(4). – P. 521-531.
  19. Sillard, P. Few-Mode Fiber for Uncoupled Mode-Division Multiplexing Transmissions / P. Sillard, M. Bigot-Astruc, D. Boivin, H. Maerten, L. Provost // 37th European Conference and Exposition on Optical Communications, OSA Technical Digest, 2011.
  20. Carpenter, J. 1×11 few-mode fiber wavelength selective switch using photonic lanterns / J. Carpenter, S.G. Leon-Saval, J.R. Salazar-Gil, J. Bland-Hawthorn, G. Baxter, L. Stewart, S. Frisken, M.A.F. Roelens, B.J. Eggleton, and J. Schröder // Optics Express. – 2014. – Vol. 22(3). – P. 2216-2221.
  21. Gloge, D. Weakly Guiding Fibers / D. Gloge // Applied Optics. – 1971. – Vol. 10(10). – P. 2252-2258.
  22. Khonina, S.N. An analysis of the angular momentum of a light field in terms of angular harmonics / S.N. Khonina, V.V. Kotlyar, V.A. Soifer, P. Pääkkönen, J. Simonen, and J. Turunen // Journal of Modern Optics. – 2001. – Vol. 48(10). – P. 1543-1557.
  23. Khonina, S.N. Excitation and detecting angular harmonics in fiber waveguide using DOE / S.N. Khonina, S.V. Karpeev // Computer Optics. – 2004. – Vol. 26 – P. 16-26. – (In Russian).
  24. Gell-Mann, M. The Eightfold Way: A Theory of Strong Interaction Symmetry / M. Gell-Mann. – California Institute of Technology, 1961. – 47 p.
  25. Голуб, М.А. Экспериментальное исследование распределения мощности по поперечным модам в волоконном световоде с помощью пространственных фильтров / М.А. Го­луб, С.В. Карпеев, С.Г. Кривошлыков, А.М. Про­хоров, И.Н. Си­сакян, В.А. Сойфер // Квантовая электроника. – 1984. – Т. 11, № 9. – С. 1869-1871. (Golub, M.A. Spatial filter investigation of the distribution of power between transverse modes in a fiber waveguide / M.A. Golub, S.V. Karpeev, S.G. Kri­voshlykov, A.M. Prokhorov,
  26. I.N. Si­sakyan and V.A. Soifer // Soviet Journal of Quantum Electronics. – 1984. – Vol. 11(9). – P. 1869-1871.)
  27. Karpeev, S.V. DOE-aided analysis and generation of transverse coherent light modes in a stepped-index optical fiber / S.V. Karpeyev, V.S. Pavelyev, M. Duparré, B. Luedge, C. Rockstuhl, S. Schröter // Optical Memory and Neural Networks (Information Optics). – 2003. – Vol. 12(1). – P. 27-34.
  28. Khonina, S.N. Phase diffractive filter to analyze an output step-index fiber beam / S.N. Khonina, R.V. Skidanov, V.V. Kotlyar, K. Jefimovs, J. Turunen // Optical Memory and Neural Networks (Allerton Press). – 2003. – Vol. 12(4). – P. 317-324.
  29. Kaiser, T. Complete modal decomposition for optical fibers using CGH-based correlation filters / T. Kaiser, D. Flamm, S. Schröter and M. Duparré // Optics Express. – 2009. – Vol. 17(11). – P. 9347-9356.
  30. Soifer, V.A. Computer design of diffractive optics / V.A. Soifer [et al.]; – ed. by V.A. Soifer. – London: Woodhead Publishing ltd., 2012. – 896 p.
  31. Schulze, C. Wavefront reconstruction by modal decomposition / C. Schulze, D. Naidoo, D. Flamm, O.A. Schmidt, A. Forbes and M. Duparré // Optics Express. – 2012. – V. 20(18). – P. 19714-19725.
  32. Khonina, S.N. Phase reconstruction using a Zernike decomposition filter / S.N. Khonina, V.V. Kotlyar, Y. Wang, D. Zhao // Computer Optics. – 1998. – Vol. 18. – P. 52-56. – (In Russian).
  33. Lyubopytov, V.S. Mathematical model of detection of mode propagation parameters in an optical fiber with few-mode operation for adaptive optical compensation of mode coupling / V.S. Lyu­bopytov, A.Z. Tlyavlin, A.Kh. Sultanov, V.Kh. Bag­manov, S.N. Khonina, S.V. Karpeev, N.L. Kazanskiy // Computer Optics. – 2013. – Vol. 37(3). – P. 352-359. – (In Russian).
  34. Arrizón, V. Pixelated phase computer holograms for the ac-curate encoding of scalar complex fields / V. Arrizón, U. Ruiz, R. Carrada, and L.A. González // Journal of the Optical Society of America A. – 2007. – Vol. 24(11). – P. 3500-3507.
  35. Flamm, D. Mode analysis with a spatial light modulator as a correlation filter / D. Flamm, D. Naidoo, C. Schulze, A. Forbes and M. Duparré // Optics Letters. – 2012. – Vol. 37(13). – P. 2478-2480.
  36. Kotlyar, V.V. An algorithm for calculating multichannel formers of Gaussian modes / V.V. Kotlyar, I.V. Nikolsky, V.A. Soifer // Optik. – 1994. – Vol. 98(1). – P. 26-30.
  37. Lyubopytov, V.S. Adaptive SLM-based compensation of intermodal interference in few-mode optical fibers / V.S. Lyu­bopytov, V.Kh. Bagmanov, A.Kh. Sultanov // Proceedings of SPIE. – 2014. – 9216, Optics and Photonics for Information Processing VIII. – P. 92160I.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20