Optimizing the dispersion properties of a ring microresonator
I.N. Chuprina, A.A. Kalachev

 

Kazan Federal University,
Zavoisky Physical-Technical Institute of RAS

Full text of article: Russian language.

 PDF

Abstract:
The work is devoted to the problem of developing integrated single-photon sources based on spontaneous four-wave mixing in ring microresonators. Considering the silicon nitride microresonator as an example, we calculate the group velocity dispersion in a wide wavelength range for the case when the ring resonator is composed of straight and curved sections, and show that for different pump wavelengths it is possible to find an optimal ratio of the height and width of the waveguide, thereby achieving zero group velocity dispersion at a minimum height. Such waveguides, which provide zero dispersion and have a minimum height, are optimal for creating ring microresonators that generate single-photon states via non-degenerate spontaneous four-wave mixing.

Keywords:
ring microresonator, spontaneous four wave-mixing, single-photon sources, group velocity.

Citation:
Chuprina IN, Kalachev AA. Optimizing the dispersion properties of a ring microresonator. Computer Optics 2017; 41(2): 155-159. DOI: 10.18287/2412-6179-2017-41-2-155-159.

References:

  1. Eisaman MD, Fan J, Migdall A, Polyakov SV. Invited review article: Single-photon sources and detectors. Review of Scientific Instruments 2011; 82(7): 071101. DOI: 10.1063/1.3610677.
  2. Chunnilall CJ, Degiovanni IP, Kück S, Müller I, Sinclair AG. Metrology of single-photon sources and detectors: A review. Opt Eng 2014; 53(8): 081910. DOI: 10.1117/1.OE.53.8.081910.
  3. Takeuchi S. Recent progress in single-photon and entangled-photon generation and applications. Japanese Journal of Applied Physics 2014; 53(3): 030101. DOI: 10.7567/JJAP.53.030101.
  4. Bertolotti M, Bovino F, Sibilia C. Quantum state engineering. Generation of single and pairs of photons. Progress in Optics 2015; 60: 1-117. DOI: 10.1016/bs.po.2015.02.001.
  5. Sangouard N, Simon Ch, de Riedmatten H, Gisin N. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys 2011; 83(1): 33-80. DOI: 10.1103/Rev­ModPhys.83.33.
  6. Munro WJ, Azuma K, Tamaki K, Nemoto K. Inside quantum repeaters. IEEE Journal of Selected Topics in Quantum Electronics 2015; 21(3): 78-90. DOI: 10.1109/JSTQE.2015.2392076.
  7. Sangouard N, Zbinden H. What are single photons good for? J Mod Opt 2012; 59(17): 1458-1464. DOI: 10.1080/09500340.2012.687500.
  8. Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ. Linear optical quantum computing with photonic qubits. Rev Mod Phys 2007; 79(1): 135-174. DOI: 10.1103/RevModPhys.79.135.
  9. Tanzilli S, Martin A, Kaiser F, De Micheli MP, Alibart O, Ostrowsky DB. On the genesis and evolution of Integrated Quantum Optics. Laser & Photonics Reviews 2012; 6(1): 115-143. DOI: 10.1002/lpor.201100010.
  10. Meany T, Gräfe M, Heilmann R, Perez-Leija A, Gross S, Steel MJ, Withford MJ, Szameit A. Laser written circuits for quantum photonics. Laser & Photonics Reviews 2015. 9(4): 363-384. DOI: 10.1002/lpor.201500061.
  11. Kaiser F, Issautier A, Ngah LA, Danila O, Herrmann H, Sohler W, Martin A, Tanzilli S. High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels. New Journal of Physics 2012; 14(8): 085015. DOI: 10.1088/1367-2630/14/8/085015.
  12. Karpinski M, Radzewicz C, Banaszek K. Dispersion-based control of modal characteristics for parametric down-conversion in a multimode waveguide. Opt Lett 2012; 37(5): 878-880. DOI: 10.1364/OL.37.000878.
  13. Solntsev AS, Sukhorukov AA, Neshev DN, Kivshar YS. Spontaneous parametric down-conversion and quantum walks in arrays of quadratic nonlinear waveguides. Phys Rev Lett 2012; 108(2): 023601. DOI: 10.1103/PhysRev­Lett.108.023601.
  14. Krapick S, Herrmann H, Quiring V, Brecht B, Suche H, Silberhorn Ch. An efficient integrated two-color source for heralded single photons. New Journal of Physics 2013; 15(3): 033010. DOI: 10.1088/1367-2630/15/3/033010.
  15. Solntsev AS, Setzpfandt F, Clark AS, Wu ChW, Collins MJ, Xiong Ch, Schreiber A, Katzschmann F, Eilenberger F, Schiek R, Sohler W, Mitchell A, Silberhorn Ch, Eggleton BJ, Pertsch T, Sukhorukov AA, Neshev DN, Kivshar YuS. Generation of nonclassical biphoton states through cascaded quantum walks on a nonlinear chip. Phys Rev X 2014; 4(3): 031007. DOI: 10.1103/PhysRevX.4.031007.
  16. Kruse R, Sansoni L, Brauner S, Ricken R, Hamilton CS, Jex I, Silberhorn Ch. Dual-path source engineering in integrated quantum optics. Phys Rev A 2015; 92(5): 053841.  DOI: 10.1103/PhysRevA.92.053841.
  17. Spring JB, Salter PS, Metcalf BJ, Humphreys PC, Moore M, Thomas-Peter N, Barbieri M, Jin X-M, Langford NK, Kolthammer WS, Booth MJ, Walmsley IA. On-chip low loss heralded source of pure single photons. Opt Express 2013; 21(11): 13522-13532. DOI: 10.1364/OE.21.013522.
  18. Kumar R, Ong JR, Savanier M, Mookherjea Sh. Controlling the spectrum of photons generated on a silicon nanophotonic chip. Nature Communications 2014; 5: 5489. DOI: 10.1038/ncomms6489.
  19. Jiang WC, Lu X, Zhang J, Painter O, Lin Q. Silicon-chip source of bright photon pairs. Opt Express 2015; 23(16): 20884-20904. DOI: 10.1364/OE.23.020884.
  20. Boitier F, Orieux A, Autebert C, Lemaître A, Galopin E, Manquest Ch, Sirtori C, Favero I, Leo G, Ducci S. Electrically injected photon-pair source at room temperature. Phys Rev Lett 2014; 112(18): 183901. DOI: 10.1103/PhysRevLett.112.183901.
  21. Collins MJ, Xiong C, Rey IH, Vo TD, He J, Shahnia S, Reardon C, Krauss TF, Steel MJ, Clark AS, Eggleton BJ. Integrated spatial multiplexing of heralded single-photon sources. Nature Communications 2013; 4: 2582. DOI: 10.1038/ncomms3582.
  22. O'Brien JL, Furusawa A, Vuckovic J. Photonic quantum technologies. Nature Photonics 2009; 3(12): 687-695. DOI: 10.1038/nphoton.2009.229.
  23. Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL. Quantum computers. Nature 2010; 464(7285): 45-53. DOI: 10.1038/nature08812.
  24. Walmsley IA. Quantum optics: Science and technology in a new light. Science 2015; 348(6234): 525-530. DOI: 10.1126/science.aab0097.
  25. Moss DJ, Morandotti R, Gaeta AL, Lipson M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photonics 2013; 7(8): 597-607. DOI: 10.1038/nphoton.2013.183.
  26. Rabus DG. Integrated Ring Resonators. Berlin, Heidelberg: Springer; 2007. ISBN: 978-3-540-68786-3.
  27. Luke K, Okawachi Y, Lamont MRE, Gaeta AL, Lipson M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt Lett 2015; 40(21): 4823-4826. DOI: 10.1364/OL.40.004823.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20