Spectral properties of nonlinear surface polaritons of mid IR range in a «semiconductor–layered metamaterial» structure
I.S. Panyaev, D.G. Sannikov

 

Ulyanovsk State University (USU)

Full text of article: Russian language.

 PDF

Abstract:
Spectral properties of surface TM-waves (polaritons) are considered in the guiding structure based on a narrow-band semiconductor (n-InSb) and a nanocomposite medium (layered metamaterial) in the mid-infrared region (5÷20 µm). The nanocomposite medium has a weak gyrotropy and contains layers of bismuth-doped iron garnet (BLIG, Lu3-xBixFe5-yGayO12) and gallium-gadolinium garnet (GGG, Gd3Ga5O12) layers magnetized to saturation. Solutions of the dispersion equations are investigated for the cases of linear and nonlinear response of the semiconductor. For an analytical description of the nonlinear response of the structure we use the «uniaxial» (longitudinal) and «biaxial» approximations. Dispersion spectra for the propagation constant, as well as field and energy characteristics of the surface polaritons are obtained and analyzed. Regions of the existence of soliton-like wave-fields of the surface polaritons are found for each of the description methods used. It is shown that the «uniaxial» model may be unsuitable for the calculation of the electromagnetic fields and energy flows in the structures based on cubic nonlinear media.

Keywords:
surface polariton, nonlinearity, layered metamaterial, semiconductor, dielectric permittivity.

Citation:
Panyaev IS, Sannikov DG. Spectral properties of nonlinear surface polaritons of Mid-IR range in a "semiconductor–layered metamaterial" structure. Computer Optics 2017; 41(2): 183-191. DOI: 10.18287/2412-6179-2017-41-2-183-191.

References:

  1. Agranovich VM, Mills DL. Surface polaritons: Electromagnetic waves at surfaces and interfaces. New York: Elsevier Science Ltd; 1982.
  2. Dmitruk NL, Litovchenko VG, Strizhevsky VL. Surface polaritons in semiconductors and dielectrics [In Russian]. Kyiv: “Naukova Dumka” Publisher; 1989.
  3. Ponath H-E, Stegeman GI. Nonlinear surface electromagnetic phenomena. Amsterdam: Elsevier Science; 1991. ISBN: 978-0-444-88359-9.
  4. Haus JW. Fundamentals and Applications of Nanophotonics. Amsterdam: Woodhead Publishing; 2016. ISBN: 978-1-78242-464-2.
  5. Wabnitz S, Eggleton B, eds. All-optical signal processing, data communication and storage applications. New York: Springer; 2015. ISBN 978-3-319-14992-9.
  6. Maier SA. Plasmonics: Fundamentals and applications. New York: Springer US; 2007. ISBN: 978-0-387-33150-8.
  7. Boardman AD, Bertolotti M, Twardowski T, eds. Nonlinear waves in solid state physics. New York, London: Plenum Press; 1990. ISBN: 978-0-306-43811-0.
  8. Shadrivov IV, Sukhorukov AA, Kivshar YuS, Zharov AA, Boardman AD, Egan P. Nonlinear surface waves in left-handed materials. Physical Review E 2004; 69(1): 016617. DOI: 10.1103/PhysRevE.69.016617.
  9. Bludov YV, Smirnova DA, Kivshar YuS, Peres NMR, Vasilevsky MI. Nonlinear TE-polarized surface polaritons on graphene. Physical Review B 2014; 89(3): 035406. DOI: 10.1103/PhysRevB.89.035406.
  10. Panyaev IS, Dadoenkova NN, Dadoenkova YuS, Rozhleys IA, Krawczyk M, Lyubchanckii IL, Sannikov DG. Four-layer nanocomposite structure as an effective optical waveguide switcher for near-IR regime. Journal of Physics D: Applied Physics 2016; 49(43): 435103. DOI: 10.1088/0022-3727/49/43/435103.
  11. Panyaev IS, Sannikov DG. Dispersive properties of optical TM-Type surface polaritons at a nonlinear semiconductor-nanocomposite (BLIG/GGG) interface. JOSA B 2016; 33(2): 220-229. DOI: 10.1364/JOSAB.33.000220.
  12. Panyaev IS, Rozhleis IA, Sannikov DG. Optical surface polaritons of tm type at the nonlinear semiconductor–nanocomposite interface. Physics of the Solid State 2016; 58(3): 592-600. DOI: 10.1134/S1063783416030252.
  13. Smirnov YG, Valovik DV. Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity. Physical Review A 2015; 91(1): 013840. DOI: 10.1103/PhysRevA.91.013840.
  14. Agranovich VM. Dielectric permeability and influence of external fields on optical properties of superlattices. Solid State Communications 1991; 78(8): 747-750. DOI: 10.1016/0038-1098(91)90856-Q.
  15. Yu P, Cardona M. Fundamentals of Semiconductors. New-York: Springer; 2010. ISBN: 978-3-642-00709-5.
  16. Bass FG, Bulgakov АА, Tetervov АG. High-frequency properties of semiconductors with superlattices [In Russian]. Moscow: "Nauka" Publisher; 1989. ISBN: 5-02-014021-Х.
  17. Hadji PI, Kiseleva ES. To the theory of nonlinear p-polarized surface waves [In Russian]. Technical Physics 1988; 58(6): 1063-1070.
  18. Akhmediev NN. Novel class of nonlinear surface waves: asymmetric modes in a symmetric layered structure. Journal of Experimental and Theoretical Physics 1982; 56(2): 299-303.
  19. Boardman AD, Shabat MM, Wallis RF. TE waves at an interface between linear gyromagnetic and nonlinear dielectric media. Journal of Physics D: Applied Physics 1991; 24(10): 1702-1707. DOI: 10.1088/0022-3727/24/10/002.
  20. Joseph RI, Christodoulides DN. Exact field decomposition for TM waves in nonlinear media. Optics Letters 1987; 12(10): 826-828. DOI: 10.1364/OL.12.000826.
  21. Boyd RW. Nonlinear Optics. 3rd ed. New York: Elsevier; 2008. ISBN: 978-0123694706.
  22. Boardman AD, Maradudin AA, Stegeman GI, Twardowski T, Wright EM. Exact theory of nonlinear p-polarized optical waves. Physical Review A 1987; 35(3): 1159-1164. DOI: 10.1103/PhysRevA.35.1159.
  23. Wallenhorst M, Niemöller M, Dötsch H, Hertel P, Gerhardt R, Gather B. Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation. Journal of Applied Physics 1995; 77(7): 2902-2905. DOI: 10.1063/1.359516.
  24. Zvezdin АK, Kotov VA. Modern magnetooptics and magnetooptical materials. New York: Taylor & Francis; 1997. ISBN: 978-0-7503-0362-0.
  25. Krinchik GS. Physics of magnetic phenomena [In Russian]. Moscow: Moscow State University Press, 1976.
  26. Randoshkin VV, Chervonenkis AYa. Applied magnetooptics [In Russian]. Moscow: "Energoatomizdat" Publisher, 1990.
  27. Hibiya T, Morishige Y, Nakashima J. Growth and characterization of liquid-phase epitaxial bi-substituted iron garnet films for magneto-optic application. Japanese Journal of Applied Physics 1985; 24(10): 1316-1319. DOI: 10.1143/JJAP.24.1316.
  28. Wood DL, Nassau K. Optical properties of gadolinium gallium garnet. Applied Optics 1990; 29(25): 3704-3707. DOI: 10.1364/AO.29.003704.
  29. Miller DAB, Smith SD. Two beam optical signal amplification and bistability in InSb. Optics Communications 1979; 31(1): 101-104. DOI: 10.1016/0030-4018(79)90254-2.
  30. Akhmanov SA, Nikitin SYu. Physical Optics. Oxford: Clarendon Press; 1997. ISBN: 978-0198517955.
  31. Wood DL, Remeika JP. Effect of impurities on the optical properties of yttrium iron garnet. Journal of Applied Physics 1967; 38(3): 1038-1045. DOI: 10.1063/1.1709476.
  32. Breckenridge RG, Blunt RF, Hosler WR, Frederikse HPR, Becker JH, Oshinsky W. Electrical and Optical Properties of Intermetallic Compounds. I. Indium Antimonide. Physical Review 1954; 96(3): 571-575. DOI: 10.1103/Phys­Rev.96.571.
  33. Uhanov YuI. Optical properties of semiconductors [In Russian]. Moscow: "Nauka" Publisher; 1977.
  34. Maradudin AA. s-Polarized nonlinear surface polaritons. Zeitschrift für Physik B Condensed Matter 1981; 41(4): 341-344. DOI: 10.1007/BF01307323.
  35. Tomlinson WJ. Surface wave at a nonlinear interface. Opt Lett 1980; 5(7): 323-325. DOI: 10.1364/OL.5.000323.
  36. Beletskii NN. The novel nonresonant type of nonlinear surface polaritons [In Russian]. Physics of the Solid State 1992; 34(5): 1592-1598.
  37. Dikshtein IE, Nikitov SA, Nikitov DS. Self-localized nonlinear surface magnetic polaritons in a ferromagnetic medium. Physics of the Solid State 1998; 40(10): 1710-1714. DOI: 10.1134/1.1130640.
  38. Albers WA Jr. The physics of opto-electronic materials. New York: Plenum Press; 1971. ISBN: 978-1-4684-1949-8.
  39. Boardman AD, Xie M, Xie K. Surface magneto-optic solitons. Journal of Physics D: Applied Physics 2003; 36(18): 2211-2217. DOI: 10.1088/0022-3727/36/18/006.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20