Generation of high-frequency interference patterns of evanescent electromagnetic  waves at Fabry-Perot resonances in dielectric  photonic crystals
E.A. Kadomina, E.A. Bezus, L.L. Doskolovich

 

Image Processing Systems Institute of RAS – Branch of the FSRC “Crystallography and Photonics” RAS Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
A diffraction structure for generating high-frequency interference patterns of evanescent electromagnetic waves based on the interference of “volume” modes of dielectric photonic crystals at Fabry-Perot resonances is discussed. For the prediction of the angular locations of the Fabry-Perot resonances, a simple approach for the description of diffraction of a plane electromagnetic wave by a finite photonic crystal is proposed, which is based on the representation of the field inside the photonic crystal in the form of superposition of two counterpropagating “volume” modes of the photonic crystal. The results obtained may find an application in the design of new near-field interference lithography devices.

Keywords:
photonic crystal, Bloch surface wave, Fabry-Perot resonance, plasmonic mode, Maxwell’s equations.

Citation:
Kadomina EA, Bezus EA, Doskolovich LL. Generation of high-frequency interference patterns of evanescent electromagnetic waves at Fabry-Perot resonances in dielectric photonic crystals. Computer Optics 2017; 41(3): 322-329. DOI: 10.18287/2412-6179-2017-41-3-322-329.

References:

  1. Laux E, Genet C, Skauli T, Ebbesen TW. Plasmonic photon sorters for spectral and polarimetric imaging. Nature Photonics 2008; 2: 161-164.
  2. Mahboub O, Palacios S, Genet C, Garcia-Vidal F, Rodrigo S, Martin-Moreno L, Ebbesen T. Optimization of bull’s eye structures for transmission enhancement. Opt Express 2010; 18(11): 11292-11299. DOI: 10.1364/OE.18.011292.
  3. Emadi A, Wu H, de Graaf G, Enoksson P, Correia JH, Wolffenbuttel R. Linear variable optical filter-based ultraviolet microspectrometer. Appl Opt 2012; 51(19): 4308-4315. DOI: 10.1364/AO.51.004308.
  4. Kadomina EA, Bezus EA, Doskolovich LL. Spectrally selective near-field enhancement in a photonic crystal structure with a diffraction grating. Computer Optics 2015; 39(4): 462-468. DOI: 10.18287/0134-2452-2015-39-4-462-468.
  5. Piliarik M, Homola J. Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 2009; 17(19): 16505-16517. DOI: 10.1364/OE.17.016505.
  6. Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L, Michelotti F. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sensors and Actuators B: Chemical 2012; 174: 292-298. DOI: 10.1016/j.snb.2012.07.015.
  7. Li Y, Yang T, Pang Z, Du G, Song S, Han S. Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry. Opt Express 2014; 22(18): 21403-21410. DOI: 10.1364/OE.22.021403.
  8. Kadomina EA, Bezus EA, Doskolovich LL. Resonant photonic-crystal structures with a diffraction grating for refractive index sensing. Computer Optics 2016; 40(2): 164-172. DOI: 10.18287/2412-6179-2016-40-2-164-172.
  9. Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 2004; 84(23): 4780-4782. DOI: 10.1063/1.1760221.
  10. Liu ZW, Wei QH, Zhang X. Surface plasmon interference nanolithography. Nano Lett 2006; 5(5): 957-961. DOI: 10.1021/nl0506094.
  11. Kadomina EA, Bezus EA, Doskolovich LL. Generation of 1D interference patterns of Bloch surface waves. Tech Phys 2016; 61(9): 1389-1394. DOI: 10.1134/S1063784216090103.
  12. Murukeshan VM, Chua JK, Tan SK, Lin QY. Nano-scale three dimensional surface relief features using single exposure counterpropagating multiple evanescent waves interference phenomenon. Opt Express 2008; 16(18): 13857-13870. DOI: 10.1364/OE.16.013857.
  13. Yu L, Barakat E, Sfez T, Hvozdara L, Francesco JD, Herzig HP. Manipulating Bloch surface waves in 2D: a platform concept-based flat lens. Light: Science & Applications 2014; 3: e124-e127. DOI: 10.1038/lsa.2014.5.
  14. Saldana XI, de la Cruz GG. Electromagnetic surface waves in semi-infinite superlattices. J Opt Soc Am A 1991; 8(1): 36-40. DOI: 10.1364/JOSAA.8.000036.
  15. Bezus EA, Doskolovich LL, Bykov DA, Soifer VA. Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal. JETP Lett 2014; 99(2): 63-66. DOI: 10.1134/S0021364014020040.
  16. Dyakonov MI. New type of electromagnetic wave propaga¬ting at an interface. Sov Phys JETP 1988; 67(4): 714-716.
  17. Moharam MG, Pommet DA, Grann EB, Gaylord TK. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 1995; 12(5): 1077-1086. DOI: 10.1364/JOSAA.12.001077.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20