Passive athermalization of refractive-diffractive plastic lenses
Levin I.A., Stepanov S.A.

 

Penza State University of Architecture and Construction, Penza, Russia

Full text of article: Russian language.

 PDF

Abstract:
Possibilities of passive athermalization of plastic-lens systems are investigated. In particular, circuit designs of two refractive-diffractive lenses are presented, the thermal defocusing of which is eliminated by optical and mechanical methods, respectively. An achievable width of the working spectral range of the refractive-diffractive lenses is estimated.

Keywords:
athermalization, thermal defocusing, achromatization, diffractive optical element, refractive-diffractive lenst.

Citation:
Levin IA, Stepanov SA. Passive athermalization of refractive-diffractive plastic lenses. Computer Optics 2017; 41(5): 694-700. DOI: 10.18287/2412-6179-2017-41-5-694-700.

References:

  1. Schaub M, Schwiegerling J, Fest EC, Symmons A, Shepard RH. Molded Optics Design and Manufacture. Boca Raton, FL: CRC Press, Taylor & Francis Group; 2011. ISBN: 978-1-4398-3256-1.
  2. Greisukh GI, Ezhov EG, Levin IA, Stepanov SA. Design of achromatic and apochromatic plastic micro-objectives. Appl Opt 2010; 49(23): 4379-4384. DOI: 10.1364/AO.49.004379.
  3. Greisukh GI, Ezhov EG, Levin IA, Stepanov SA. Design of plastic-lens micro-objectives superachromats [In Russian]. Computer Optics 2011; 35(4): 473-479.
  4. Greisukh GI, Stepanov SA, Ezhov EG, Zakharov OA, Levin IA. Plastic apochromatic lens [In Russian]. Pat RF of Invent N2464600 of October 20, 2012, Russian Bull of Inventions N29, 2012.
  5. Baumer S. Handbook of plastic optics. Weinheim: Wiley-VCH; 2005. ISBN: 978-3-5274-0424-7.
  6. Greisukh GI, Ezhov EG, Kalashnikov AV, Levin IA, Stepanov SA. The efficiency of relief-phase diffractive elements at a small number of Fresnel zones. Optics and Spectroscopy 2012; 113(4): 425-430. DOI: 10.1134/S0030400X12100037.
  7. Zhao YH, Fan CJ, Ying CF, Liu SH. The investigation of triple-layer diffraction optical element with wide field of view and high diffraction efficiency. Opt Commun 2013; 295: 104-107. DOI: 10.1016/j.optcom.2013.01.009.
  8. Greisukh GI, Danilov VA, Ezhov EG, Stepanov SA, Usievich BA. Spectral and angular dependences of the efficiency of relief-phase diffractive lenses with two- and three-layer microstructures. Optics and Spectroscopy 2015; 118(6): 964-970. DOI: 10.1134/S0030400X15060090.
  9. Jamieson TH. Athermalization of optical instruments from the optomechanical viewpoint. Proc SPIE 1992; 10265: 131-159. DOI: 10.1117/12.61105.
  10. Londono C, Plummer WT, Clark PP. Athermalization of a single-component lens with diffractive optics. Appl Opt 1993; 32(13): 2295-2302. DOI: 10.1364/AO.32.002295.
  11. Behrmann GP, Bowen JP. Influence of temperature on diffractive lens performance. Appl Opt 1993; 32(14): 2483-2489. DOI: 10.1364/AO.32.002483.
  12. Levin IA. Thermo-optical aberrations of radially symmetric diffractive optical elements [In Russian]. Computer Optics 2016; 40(1): 51-56. DOI: 10.18287/2412-6179-2016-40-1-51-56.
  13. Bronshten IG, Zverev VA, Livshits IL, Kim Y-G, Kim T-Y, Jung Ph-H. Choosing an optical setup and designing compact objectives for mobile telephones. J Opt Technol 2009; 76(5): 268-273. DOI: 10.1364/JOT.76.000268.
  14. Rusinov MM. Technical optics: Study guide for university [In Russian]. Leningrad: “Mashinostroenie” Publisher; 1979.
  15. Greisukh GI, Bobrov ST, Stepanov SA. Optics of diffractive and gradient-index elements and systems. Bellingham: SPIE Press; 1997. ISBN: 978-0-8194-2451-8.
  16. Bobrov ST, Greisukh GI, Turkevich YuG. Optics of diffractive elements and systems [In Russian]. Leningrad: “Mashinostroenie” Publisher; 1986.
  17. Farn MW, Goodman JW. Diffractive doublets corrected at two wavelengths. J Opt Soc Am A 1991; 8(6): 860-867. DOI: 10.1364/JOSAA.8.000860.
  18. Greiysukh GI, Ezhov EG, Kazin SV, Stepanov SA. Optical systems with diffractive elements: ways of the chromatism correction [In Russian]. Computer Optics 2010; 34(2): 187-193.
  19. Karpeev SV, Ustinov AV, Khonina SN. Design and analysis of a three-wave diffraction focusing doublet [In Russian]. Computer Optics 2016; 40(2): 173-178. DOI: 10.18287/2412-6179-2016-40-2-173-178.
  20. Zemax. Source: áhttp://zemax.com/ñ.
  21. Medvedev AV, Grinkevich AV, Knyazeva SN. Objective athermalization of sighting and observation systems as an instrument to ensure functioning of armor and tank weapons [In Russian]. Photonics 2016; 2(56): 94-109.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru ; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20