Holographic diffuser with controlled scattering indicatrix
Petrov N.I.

 

Scientific and Technological Center of Unique Instrumentation of the RAS, Moscow, Russia

Full text of article: Russian language.

 PDF

Abstract:
Optical elements for illumination systems in different display screens (including 3D displays) and generating the radiation patterns of LEDs are considered. It is analyzed in which way the intensity distribution and the light scattering indicatrix are affected by the ratio of the height dispersion and the correlation length of surface roughness, the coherence radius of incident light, and the refractive index of the diffuser material. It is shown that the light scattering indicatrix is narrowed with increasing correlation length of the film surface roughness and/or the radius of radiation coherence.

Keywords:
diffraction of light, holographic diffusers, light scattering indicatrix, spatial coherence of light.

Citation:
Petrov NI. Holographic diffusers with controlled scattering indicatrix. Computer Optics 2017; 41(6): 831-836. DOI: 10.18287/2412-6179-2017-41-6-831-836.

References:

  1. Sales TRM. Structured microlens arrays for beam shaping. Opt Eng 2003; 42(11): 3084-3085. DOI: 10.1117/1.1618817.
  2. Petrov NI. Effects of Light Coherence for Micro-Lens Arrays. Proc FiO 2008/Laser Science XXIV 2008: FThU3. DOI: 10.1364/FIO.2008.FThU3.
  3. Hong JY, Park SG, Lee CK, Moon S, Kim SJ, Hong J, Kim Y, Lee B. See-through multi-projection three-dimensional display using transparent anisotropic diffuser. Opt Express 2016; 24(13): 14138-14151. DOI: 10.1364/OE.24.014138.
  4. Mandel L, Wolf E. Optical coherence and quantum optics. – N.Y.: Cambridge University Press; 1995. ISBN: ‎0-521-41711-2.
  5. Krivoshlykov S.G., Petrov N.I., Sisakyan I.N. Spatial coherence of optical fields in longitudinally inhomogeneous media with the square-law refractive index profile. Sov J Quantum Electron 1985; 15(3): 330-338.
  6. Soifer VA, O. Korotkova O, Khonina SN, Shchepakina EA. Vortex beams in turbulent media: Review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  7. Krivoshlykov SG, Petrov NI, Sisakyan IN. Density-matrix formalism for partially coherent optical fields propagating in slightly inhomogeneous media. Opt Quantum Electron 1986; 18(4): 253-264.
  8. Petrov NI. Reflection and transmission of light beams at a curved interface: coherent state approach. American Journal of Optics and Photonics 2015; 3(2): 30-33. DOI: 10.11648/j.ajop.20150302.12.
  9. Petrov NI. Reflection and transmission of strongly focused vector beams at a dielectric interface. Opt Lett 2004; 29(5): 421-423. DOI: 10.1364/OL.29.000421.
  10. Petrov NI, Petrova GN. Diffraction of partially-coherent light beams by microlens arrays. Opt Express 2017; 25(19): 22545-22564. DOI: 10.1364/OE.25.022545.
  11. Light shaping diffuser overview. Source: <https://www.luminitco.com/products/light-shaping-diffusers>.
  12. Kim SI, Chi YS, Ham YN, Park GhY, Kim JM. Holographic diffuser by use of a silver halide sensitized gelatin process. Appl Opt 2003; 42(14): 2482-2491. DOI: 10.1364/AO.42.002482.
  13. Ganzherli NM, Gulyaev SN, Maurer IA, Chernykh DF. Formation of optical scatterers on silver halide photomaterials using multiplex holograms. Tech Phys 2014; 59(12): 1849-1853.
  14. Petrov NI, Sokolov Y, Khromov M, Storozheva A. Integral imaging multi-view 3D display. FiO+LS 2017: JTu2A.107. DOI: 10.1364/FIO.2017.JTu2A.107.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20