Numerical focusing and the field of view in interference microscopy
Grebenyuk A.A., Klychkova D.M., Ryabukho V.P.

 

Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia,
Saratov State University, Saratov, Russia,
Christian Doppler Laboratory OPTRAMED, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria

 PDF

Abstract:
This paper presents an analysis of the effects occurring at the borders of the field of view in numerically focused imaging of optically defocused objects in interference microscopy systems with spatially coherent illumination of an object. Equations describing the borders of regions of different types in numerically focused images with respect to the defocus parameters are obtained. Equations for estimating the acceptable limits of defocus in numerically focused imaging are obtained. Experimental investigation of the effects, occurring at the borders of the field of view in numerically focused imaging of optically defocused objects in a digital holographic microscope with illumination in transmission is performed.

Keywords:
numerical focusing, interference microscopy, digital holographic microscopy, optical coherence microscopy.

Citation:
Grebenyuk AA, Klychkova DM, Ryabukho VP. Numerical focusing and the field of view in interference microscopy. Computer Optics 2018; 42(1): 28-37. DOI: 10.18287/2412-6179-2018-42-1-28-37.

References:

  1. Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl Opt 1999; 38(34): 6994-7001. DOI: 10.1364/AO.38.006994.
  2. Mann CJ, Yu L, Lo C-M, Kim MK. High-resolution quantitative phase-contrast microscopy by digital holography. Opt Express 2005; 13(22): 8693-8698. DOI: 10.1364/OPEX.13.008693.
  3. Dubois F, Requena M-LN, Minetti C, Monnom O, Istasse E. Partial spatial coherence effects in digital holographic microscopy with a laser source. Appl Opt 2004; 43(5): 1131-1139. DOI: 10.1364/AO.43.001131.
  4. Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection. Appl Opt 2008; 47(4): A52-A61. DOI: 10.1364/AO.47.000A52.
  5. Massatsch P, Charrière F, Cuche E, Marquet P, Depeursinge CD. Time-domain optical coherence tomography with digital holographic microscopy. Appl Opt 2005; 44(10): 1806-1812. DOI: 10.1364/AO.44.001806.
  6. Yu LF, Kim MK. Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method. Opt Lett 2005; 30(16): 2092-2094. DOI: 10.1364/OL.30.002092.
  7. Ralston TS, Marks DL, Carney PS, Boppart SA. Interferometric synthetic aperture microscopy. Nature Physics 2007; 3: 129-134. DOI: 10.1038/nphys514.
  8. Marks DL, Ralston TS, Boppart SA, Carney PS. Inverse scattering for frequency-scanned full-field optical coherence tomography. JOSA A. 2007; 24(4): 1034-1041. DOI: 10.1364/JOSAA.24.001034.
  9. Hillmann D, Lührs C, Bonin T, Koch P, Hüttmann G. Holoscopy-holographic optical coherence tomography. Opt Lett 2011; 36(13): 2390-2392. DOI: 10.1364/OL.36.002390.
  10. Shabanov DV, Geliknov GV, Gelikonov VM. Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization. Laser Phys Lett 2009; 6(10): 753-758. DOI: 10.1002/lapl.200910052.
  11. Kumar A, Drexler W, Leitgeb RA. Subaperture correlation based digital adaptive optics for full field optical coherence tomography. Opt Express 2013; 21(9): 10850-10866. DOI: 10.1364/OE.21.010850.
  12. Kumar A, Drexler W, Leitgeb RA. Numerical focusing methods for full field OCT: a comparison based on a common signal model. Opt Express 2014; 22(13): 16061-16078. DOI: 10.1364/OE.22.016061.
  13. Grebenyuk AA, Ryabukho VP. Numerical correction of coherence gate in full-field swept-source interference microscopy. Opt Lett 2012; 37(13): 2529-2531. DOI: 10.1364/OL.37.002529.
  14. Grebenyuk A, Federici A, Ryabukho V, Dubois A. Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination. Appl Opt 2014; 53(8): 1697-1708. DOI: 10.1364/AO.53.001697.
  15. Talaikova NA, Grebenyuk AA, Kalyanov AL, Ryabukho VP. Numerical focusing in diffraction phase microscopy. Proc SPIE 2016; 9917: 99171V. DOI: 10.1117/12.2229881.
  16. Cuche E, Marquet P, Depeursinge C. Aperture apodization using cubic spline interpolation: application in digital holographic microscopy. Optics Communications 2000; 182(1-3): 59-69. DOI: 10.1016/S0030-4018(00)00747-1.
  17. Dubois F, Monnom F, Yourassowsky C, Legros J-C. Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies. Appl Opt 2002; 41(14): 2621-2626.
  18. Kozacki T. Numerical errors of diffraction computing using plane wave spectrum decomposition. Opt Commun 2008; 281(17): 4219-4223. DOI: 10.1016/j.optcom.2008.05.023.
  19. Matsushima K, Shimobaba T. Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields. Opt Express 2009; 17(22): 19662-19673. DOI: 10.1364/OE.17.019662.
  20. Grebenyuk AA, Ryabukho VP. Field of view of numerically focused images in digital holographic microscopy. Saratov Fall Meeting 2013 – 1st International Symposium on Optics and Biophotonics; 2013.
  21. Grebenyuk AA, Ryabukho VP. Numerical reconstruction of volumetric image in swept-source interference microscopy. AIP Conf Proc 2013; 1537: 147-154. DOI: 10.1063/1.4809704.
  22. Grebenyuk AA, Ryabukho VP. Theoretical model of volumetric objects imaging in a microscope. Proc SPIE 2012; 8430: 84301B. DOI: 10.1117/12.922198.
  23. Grebenyuk AA, Ryabukho VP. Coherence effects of thick objects imaging in interference microscopy. Proc SPIE 2012; 8427: 84271M. DOI: 10.1117/12.922108.
  24. Grebenyuk AA, Ryabukho VP. Defocus and numerical focusing in interference microscopy with wide temporal spectrum of illumination field. Computer Optics 2016; 40(6): 772-780. DOI: 10.18287/2412-6179-2016-40-6-772-780.
  25. Grebenyuk AA, Ryabukho VP. Theory of imaging and coherence effects in full-field optical coherence microscopy. In Book: Dubois A, ed. Handbook of full-field optical coherence microscopy. Chap 2. Singapore: Pan Stanford Publishing; 2016: 53-89. ISBN: 978-981-4669-16-0.
  26. Goodman JW. Introduction to Fourier optics. 2nd ed. New York: McGraw-Hill; 1996. ISBN: 978-0-07-024254-8.
  27. Grebenyuk AA, Ryabukho VP. Numerical focusing in digital holographic microscopy with partially spatially coherent illumination in transmission. Proc SPIE 2014; 9031: 903119. ISBN: 10.1117/12.2052837.
  28. Grebenyuk AA, Tarakanchikova YV, Ryabukho VP. An off-axis digital holographic microscope with quasimonochromatic partially spatially coherent illumination in transmission. J Opt 2014; 16(10): 105301. DOI: 10.1088/2040-8978/16/10/105301.
  29. Dubois F, Joannes L, Legros J-C. Improved three-dimen­sional imaging with a digital holography microscope with a source of partial spatial coherence. Appl Opt 1999; 38(34): 7085-7094. DOI: 10.1364/AO.38.007085.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20