Spectral characteristics of a photonic bandgap fiber
Plastun A.S., Konyukhov A.I.

Saratov State University, Saratov, Russia

Abstract:
With the help of numerical simulation, we study the propagation of light in an all-glass photonic crystal fiber. A comparison of the spectral characteristics of a fiber with the idealized hexagonal structure and a fiber with transverse profile deformations is conducted. The calculations use methods based on a spatial Fourier transform. It is shown that total internal reflection modes and the fundamental mode of the photonic bandgap can be excited simultaneously. Structural deformation of a photonic crystal fiber results in the shifting and narrowing of the photonic bandgap. Excitation of the total internal reflection modes leads to increased absorption on the boundaries of the spectral band of the fiber.

Keywords:
photonic crystals, fiber optics, numerical modeling, spectroscopy.

Citation:
Plastun AS, Konyukhov AI. Spectral characteristics of a photonic bandgap fiber. Computer Optics 2018; 42(2): 236-243. DOI: 10.18287/2412-6179-2018-42-2-236-243.

References:

  1. Joannopoulos J, Meade R, Winn J. Photonic Crystals: Molding the flow of light. Princeton, NJ: Princeton University Press; 1995. ISBN: 978-0-6910-3744-8.
  2. Cregan RF, Managan BJ, Knight JC, Birks TA, Russell PStJ, Roberts PJ, Allen DC. Single-mode photonic band gap guidance of light in air. Science 1999; 285(5433): 1537-1539. DOI: 10.1126/science.285.5433.1537.
  3. Bise RT, Windeler RS, Kranz KS, Kerbage C, Eggleton BJ, Trevor DJ. Tunable photonic band gap fiber. OFC 2002: 466-468. DOI: 10.1109/OFC.2002.1036489.
  4. Luan F, George AK, Hedley TD, Pearce GJ, Bird DM, Knight JC, Russell PStJ. All-solid photonic band gap fiber. Opt Lett 2004(20); 29: 2369-2371. DOI: 10.1364/OE.14.010844.
  5. Schmidt MA, Granzow N, Da N, Peng M, Wondraczek L, Russell PSJ. All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers. Optics Letters 2009; 34(13): 1946-1949. DOI: 10.1364/OL.34.001946.
  6. Jansen F, Stutzki F, Jauregui C, Limpert J, Tünnermann A. Avoided crossings in photonic crystal fibers. Optics Express 2011; 19(14): 13578-13589. DOI:  10.1364/OE.19.013578.
  7. Nielsen M, Vienne G, Folkenberg J, Bjarklev A. Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber. Optics Letters 2003; 28(4): 236-246. DOI: 10.1364/OL.28.000236.
  8. Ren G, Shum P, Zhang L, Yu X, Tong W, Luo J. Low-loss all-solid photonic bandgap fibre. Optics Letters 2007;32(9): 1023-1025. DOI: 10.1364/OL.32.001023.
  9. Konyukhov A.I., Soloviev A.S., Melnikov L.A., Akishin S.A. Gain of the guided modes in microstructured optical fibers [In Russian]. Saratov State University Proceedings 2007;7(2) :30-36. ISSN1817-3020.
  10. Brilland L, Troles J, Houizot P, Désévédavy F, Coulombier Q, Renversez G, Chartier T, Nguyen T N, Adam J, Traynor N. Interfaces impact on the transmission of chalcogenides photonic crystal fibres. Journal of the Ceramic Society of Japan 2008; 116(1358): 1024-1027. DOI: 10.2109/jcersj2.116.1024.
  11. Lousteau J, Scarpignato G, Athanasiou G S, Mura E, Boetti N, Olivero M, Benson T, Sewell P, Abrate S, Milanese D. Photonic bandgap confinement in an all-solid tellurite-glass photonic crystal fiber. Optics Letters 2012; 37: 4922-4924. DOI: 10.1364/OL.37.004922.
  12. Caillaud C, Renversez G, Brilland L, Mechin D, Calvez L, Adam J, Troles J. Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers. Materials 2014; 7(9): 6120-6129. DOI: 10.3390/ma7096120.
  13. Li M-J, West J A, Koch KW. Modeling effects of structural distortions on air-core photonic bandgap fibers. Journal of Lightwave Technology 2007; 25(9): 2463-2468. DOI: 10.1109/JLT.2007.902744.
  14. Pureur V, Bouwmans G, Perrin M, Quiquempois Y, and Douay M. Impact of transversal defects on confinement loss of an all-solid 2-D photonic-bandgap fiber. Journal of Lightwave Technology 2007; 25(11): 3589-3596. DOI: 10.1109/JLT.2007.907741.
  15. Konyukhov AI, Soloviev AS, Melnikov LA, Akishin SA. Gain of the guided modes in microstructured optical fibers [In Russian]. Izvestiya Saratovskogo univeristeta, Seriya Fizika 2007; 7(2): 30-36.
  16. Saitoh K, Mortensen NA, Koshiba M. Air-core photonic band-gap fibers: the impact of surface modes. Optics Express 2004; 12(3): 394-400. DOI: 10.1364/OPEX.12.000394.
  17. Benson TM, Hu BB, Vukovic A, Sewell P. What is the future for beam propagation methods? Proc SPIE 2004; 5579: 351-358. DOI: 10.1117/12.577173.
  18. López-Doña JM, Wangüemert-Pérez JG, Molina-Fernández I. Fast-fourier-based three-dimensional full-vectorial beam propagation method. IEEE Photonics Technology Letters 2005; 17(11): 2319-2321. DOI: 10.1109/LPT.2005.857618.
  19. Melnikov LA, Khromova I, Scherbakov A, Nikishin N. Softglass hollow-core photonic crystal fibers. Proc SPIE 2005; 5950: 243-251. DOI: 10.1117/12.623163.
  20. Sauliev VK. Integration of parabolic type equations by the grid method [In Russian]. Moscow: “Fizmatlit” Publisher; 1960.
  21.  Guobin R, Zhi W, Shuqin L, Yan L, Shuisheng J. Full-vectorial analysis of complex refractive-index photonic crystal fibers. Optics Express 2004; 12(6): 1126-1135. DOI: 10.1364/OPEX.12.001126.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20