Noise minimised high resolution digital holographic microscopy applied to surface topography
Achimova E., Abaskin V., Claus D., Pedrini G., Shevkunov I., Katkovnik V.

Institute of Applied Physics, the Academy of Sciences of Moldova, Chisinau, Moldova,
Institut fur Technische Optik, the University of Stuttgart, Stuttgart, Germany,
St. Petersburg State University, St. Petersburg, Russia,
Department of Signal Processing, Technology University of Tampere, Tampere, Finland

 PDF

Abstract:
The topography of surface relief gratings was studied by digital holographic microscopy. The applicability of the method for quantitative measurements of surface microstructure at nanoscale was demonstrated. The method for wavefront reconstruction of surface relief from a digital hologram recorded in off-axis configuration was also applied. The main feature is noise filtration due to the presence of noise in the recorded intensity distribution and the use of all orders of the hologram. Reconstruction results proved a better effectiveness of our approach for topography studying of relief grating patterned on a ChG As2S3 – Se nanomultilayers in comparison with standard Fourier Transform and Atom Force Microscope methods.

Keywords:
digital holography; digital image processing; diffraction gratings.

Citation:
Achimova E, Abaskin V, Claus D, Pedrini G, Shevkunov I, Katkovnik V. Noise minimized high resolution digital holographic microscopy applied to surface topography. Computer Optics 2018; 42(2): 267-272. DOI: 10.18287/2412-6179-2018-42-2-267-272.

References:

  1. Tanaka K, Shimakawa K. Amorphous chalcogenide semiconductors and related materials. New York: Springer; 2011. ISBN: 978-1-4419-9509-4.
  2. Voynarovych I, Schroeter S, Poehlmann R, Vlcek M. Surface corrugating direct laser writing of microstructures in ternary chalcogenide films using a continuous-wave super-bandgap laser. J Phys D: App Phys 2015; 48(26): 265106. DOI: 10.1088/0022-3727/48/26/265106.
  3. Gerbreders A, Bulanovs A, Mikelsone J, Traskovskis K, Potanina E, Vembris A, Teteris J. Photoinduced mass transport in low molecular organic glasses and its practical application in holography. J Non-Crystalline Solids 2015; 421: 48-53. DOI: 10.1016/j.jnoncrysol.2015.04.040.
  4. Sakai T. Hologram copy using amorphous films as a master. Opt Commun 1978;24: 47-50. DOI: 10.1016/0030-4018(78)90264-X.
  5. Bohdan R, Molnar S, Kokenyesi S. Methods comparing peculiarities of surface-relief recording in amorphous chalcogenides. Phys Status Solidi A 2015; 212(10): 2186-2190. DOI: 10.1002/pssa.201532288.
  6. Molnara S, Bohdana R, Csarnovicsa I, Burunkovab I, Kokenyesi S. Amorphous chalcogenide layers and nanocomposites for direct surface patterning. Proc SPIE 2015; 9359: 935908. DOI: 10.1117/12.2076470.
  7. Kreis T. Handbook of holographic interferometry: Optical and digital methods. Veinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2005. ISBN: 978-3-527-40546-6.
  8. Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging.Opt Lett 1999; 24(5): 291-293. DOI: 10.1364/OL.24.000291.
  9. Schnars U. Direct phase determination in hologram interferometry with use of digitally recorded holograms. JOSA A 1994; 11(7): 2011-2015. DOI: 10.1364/JOSAA.11.002011.
  10. Claus D, Watson J, Rodenburg J. Analysis and interpretation of the Seidel aberration coefficients in digital holography. Appl Opt 2011; 50(34): H220-H229. DOI: 10.1364/AO.50.00H220.
  11. Stronski A, Achimova E, Paiuk A, Abashkin V, Meshalkin A, Prisacar A, Triduh G, Lytvyn O. Surface relief formation in Ge5As37S58–Se nanomultilayers. J Non-Cryst Solids 2015; 409: 43-48. DOI: 10.1016/j.jnoncrysol.2014.11.010.
  12. Achimova E, Stronski A, Abaskin V, Meshalkin A, Paiuk A, Prisacar A, Oleksenko P, Triduh G. Direct surface relief formation on As2S3–Se nanomultilayers in dependence on polarization states of recording beams. Opt Mater 2015; 47: 566-572. DOI: 10.1016/j.optmat.2015.06.044.
  13. Osten W, Faridian A, Gao P, Körner K, Naik D, Pedrini G, Singh AK, Takeda M, Wilke M. Recent advances in digital holography. Appl Opt 2014; 53(27): G44-G63. DOI: 10.1364/AO.53.000G44.
  14. Osten W, Baumbach T, Jüptner W. Comparative digital holography. Opt Lett 2002; 27(20): 1764-1766. DOI: 10.1364/OL.27.001764.
  15. Kujawinska M, Wojciak J. High accuracy Fourier transform fringe pattern analysis. Optics and lasers in engineering 1991; 14(4): 325-339.
  16. Liebling M, Blu T, Unser M. Complex-wave retrieval from a single off-axis hologram. JOSA A 2004; 21(3): 367-377. DOI: 10.1364/JOSAA.21.000367.
  17. Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 2007; 16(8): 2080-2095. DOI: 10.1109/TIP.2007.901238.
  18. Katkovnik V, Shevkunov IA, Petrov NV, Egiazarian K. Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase. Opt Lett 2015; 40(10): 2417-2420. DOI: 10.1364/OL.40.002417.
  19. Katkovnik V, Astola J. High-accuracy wave field reconstruction: decoupled inverse imaging with sparse modeling of phase and amplitude. JOSA A 2012; 29(1): 44-54. DOI: 10.1364/JOSAA.29.000044.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20