Constructing a quadratic-exponential FIR-filter with an extended frequency response midrange
Fursov V.A.

Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia
Samara National Research University, Samara, Russia

Abstract:
This article is concerned with synthesizing filter with finite impulse response (FIR-filters) employed to correct radially symmetric distortions such as defocusing.  We propose a new parametric class of finite impulse response filters (FIR-filters) based on a model of the one-dimensional radially symmetric frequency response. In the proposed method, the one-dimensional frequency response is composed of quadratic and exponential functions. The two-dimensional impulse response of the filter is constructed by sampling one-dimensional impulse responses for all directions. The development consists in introducing an extended mid-frequency region of the frequency response, thus increasing  the contribution of the frequencies to image correction. Examples are given in order to illustrate the possibility of the high-quality distortion correction. In particular, it is shown that the proposed method provides the restoration quality higher than that obtained when using an optimal Wiener filter (taken from OpenCV).

Keywords:
FIR-Filter, impulse response, frequency response, image processing.

Citation:
Fursov VA. Constructing a quadratic-exponential FIR-filter with an extended frequency response midrange. Computer Optics 2018; 42(2): 297-305. DOI: 10.18287/2412-6179-2018-42-2-297-305.

References:

  1. Pratt, W.K. Digital image processing. 4th ed. Hoboken, NJ: John Wiley & Sons, Inc; 2007. ISBN: 978-0-471-76777-0.
  2. Lagendijk R. and Biemond J. Basic methods for image restoration and identification. London: Academic Press, 2000.
  3. Soifer VA. Computer image processing, Part II: Methods and algorithms. VDM Verlag Dr Müller; 2010. ISBN: 978-3-6391-7545-5.
  4. Rajagopalan N, Chellappa R, eds. Motion deblurring: Algorithms and systems. Cambridge, UK: Cambridge Univ Press; 2014. ISBN: 978-1-107-04436-4.
  5. Wang R, Tao D. Recent progress in image deblurring. Source: áhttp://arxiv.org/abs/1409.6838ñ.
  6. D’Andr`es L, Salvador J, Kochale A, Susstrunk S. Non-parametric blur map regression for depth of field extension. IEEE Trans Image Process 2016; 25(4): 1660-1673. DOI: 10.1109/TIP.2016.2526907.
  7. Tang C, Wu J, Hou Y, Wang P, Li W. A spectral and spatial approach of coarse-to-fine blurred image region detection. IEEE Signal Processing Letters 2016; 23(11): 1652-1656. DOI: 10.1109/LSP.2016.2611608.
  8. Couzinié-Devy F, Sun J, Alahari K, Ponce J. Learning to estimate and remove non-uniform image blur. Proc CVPR 2013: 1075-1082. DOI: 10.1109/CVPR.2013.143.
  9. Saad E, Hirakawa K. Defocus blur-invariant scale-space feature extractions. IEEE Trans Image Process 2016; 25(7): 3141-3156. DOI: 10.1109/TIP.2016.2555702.
  10. Tian D, Tao D. Coupled learning for facial deblur. IEEE Trans Image Process 2016; 25(2): 961-972. DOI: 10.1109/TIP.2015.2509418.
  11. Peng Y-T, Cosman PC. Underwater image restoration based on image blurriness and light absorption. IEEE Trans Image Process 2017; 26(4): 1579-1594. DOI: 10.1109/TIP.2017.2663846.
  12. Zhu X, Cohen S, Schiller S, Milanfar P. Estimating spatially varying defocus blur from a single image. IEEE Trans Image Process 2013; 22(12): 4879-4891. DOI: 10.1109/TIP.2013.2279316.
  13. Liang H, Weller DS. Comparison-based image quality assessment for selecting image restoration parameters. IEEE Trans Image Process 2016; 25(11): 5118-5130. DOI: 10.1109/TIP.2016.2601783.
  14. Moreno C. Constructing FIR digital filters with valarry. Source: áhttps://www.mochima.com/articles/FIR/FIR.htmlñ.
  15. Ye W, Yu YJ. Greedy algorithm for the design of linear-phase FIR filters with sparse coefficients / Circuits Syst Signal Process 2016; 35(4): 1427-1436. DOI: 10.1007/s00034-015-0122-5.
  16. Arar S. FIR filter design by windowing: Concepts and the rectangular window. Source: áhttps://www.allaboutcir­cuits.com/technical-articles/finite-impulse-response-filter-design-by-windowing-part-i-concepts-and-rect/ñ.
  17. Petrou M, Petrou C. Image processing: Fundamentals / Maria Petrou, Costos Petrou. 2nd ed. Singapore: John Wiley & Sons Ltd; 2010. ISBN 978-0-470-74586-1.
  18. Bavrina AYu, Myasnikov VV, Sergeev AV. Method of parametric estimation of optoelectronic tract of remote sensed optical image formation [In Russian]. Computer Optics 2011; 35(4): 500-507.
  19. Fursov VA, Nikonorov AV, Bibikov SA, Yakimov PYu, Minaev EYu. Correction of distortions in color images based on parametric identification. Pattern Recognition and Image Analysis 2011; 21(2): 125-128. DOI: 10.1134/S1054661811020349.
  20. Fursov VA. Identification of square-exponential FIR-filter parameters in the absence of a test image. Procedia Engineering 2017; 201: 206-212. DOI: 10.1016/j.proeng.2017.09.611.
  21. Fursov VA. Constructing FIR-filters for a given parametrical class of frequency response for defocus correction [In Russian]. Computer Optics 2016; 40(6): 878-886. DOI: 10.18287/2412-6179- 2016-40-6-878-886.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20