A four-sector polarization converter integrated in a calcite crystal
Karpeev S.V.
, Podlipnov V.V., Khonina S.N., Paranin V.D., Reshetnikov A.S.

 

Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

 PDF

Abstract:
A new approach to the implementation of sectorial plates for beam polarization conversion is proposed. Using a newly developed etching technology, a four-sector polarization converter integrated into a calcite crystal is implemented. A four-sector polarization converter, which provides a pairwise orthogonal polarization state of the sectors, is fabricated and experimentally characterized. A comparison is made of inter-sector joints of the integrated converter with those of a converter composed of individual wave-plate fragments. Analysis of the spectral properties of such a converter is carried out, wavelengths at which the necessary polarization conversion takes place are determined. The quasi-periodic repetition of phase matching conditions is experimentally shown to slow down  with increasing wavelength.

Keywords:
inhomogeneous polarization, sector polarizing plate, the quality of sector coupling, the spectral method for selecting the phase matching condition.

Citation:
Karpeev SV, Podlipnov VV, Khonina SN, Paranin VD, Reshetnikov AS. A four-sector polarization converter integrated in a calcite crystal. Computer Optics 2018; 42(3): 401-407. DOI: 10.18287/2412-6179-2018-42-3-401-407.

References:

  1. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S. Ef?cient extracavity generation of radially and azimuthally polarized beams. Opt Lett 2007; 32(11): 1468-1470. DOI: 10.1364/OL.32.001468.
  2. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S. Spatially-variable retardation plate for e?cient generationof radially- and azimuthally-polarized beams. Optics Communications 2008; 281(4): 732-738. DOI: 10.1016/j.optcom.2007.10.088.
  3. Man Zh, Min Ch, Zhang Y, Shen Z, Yuan X-C. Arbitrary vector beams with selective polarization states patterned by tailored polarizing ?lms. Laser Phys 2013; 23(10): 105001. DOI: 10.1088/1054-660X/23/10/105001.
  4. Nalimov AG, O'Faolain L, Stafeev SS, Shanina MI, Kotlyar VV. Reflected four-zones subwavelenghth mictooptics element for polarization conversion from linear to radial [In Russian]. Computer Optics 2014; 38(2): 229-236.
  5. Stafeev SS, Nalimov AG, Kotlyar MV, O’Faolain L. A four-zone reflective azimuthal micropolarizer. Computer Optics 2015; 39(5): 709-715. DOI: 10.18287/0134-2452-2015-39-5-709-715.
  6. Berezny AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements produced by photolithography. Optics and Lasers in Engineering 1991; 15(5): 331-340. DOI: 10.1016/0143-8166(91)90020-T.
  7. Niu C-H, Gu B-Y, Dong B-Z, Zhang Y. A new method for generating axially-symmetric and radially-polarized beams. J Phys D: Appl Phys 2005; 38(6): 827-832. DOI: 10.1088/0022-3727/38/6/006.
  8. Khonina SN, Karpeev SV. Generating inhomogeneously polarized higher-order laser beams by use of DOEs beams. JOSA A 2011; 28(10): 2115-2123. DOI: 10.1364/JOSAA.28.002115.
  9. Phua PB, Lai WJ, Lim YL, Tiaw KS, Lim BC, Teo HH, Hong MH. Mimicking optical activity for generating radially polarized light. Opt Lett 2007; 32(4): 376-378. DOI: 10.1364/OL.32.000376.
  10. Lai WJ, Lim BC, Phua PB, Tiaw KS, Teo HH, Hong MH Generation of radially polarized beam with a segmented spiral varying retarder. Opt Express 2008; 16(20): 15694-15699. DOI: 10.1364/OE.16.015694.
  11. Khonina SN, Karpeev SV, Alferov SV, Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial crystals. J Opt 2015; 17(6): 065001. DOI: 10.1088/2040-8978/17/6/065001.
  12. Khonina SN, Karpeev SV, Morozov AA, Paranin VD. Implementation of ordinary and extraordinary beams interference by application of diffractive optical elements. J Mod Opt 2016; 63(13): 1239-1247. – DOI: 10.1080/09500340.2015.1137368.
  13. Khonina SN, Karpeev SV, Paranin VD, Morozov AA. Polarization conversion under focusing of vortex laser beams. along the axis of anisotropic crystals. Phys Lett A 2017; 381(30): 2444-2455. DOI: 10.1016/j.physleta.2017.05.025.
  14. Alferov SV, Karpeev SV, Khonina SN, Moiseev OYu. Experimental study of focusing of inhomogeneously polarized beams generated using sector polarizing plates. Computer Optics 2014; 38(1): 57-64.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20