Modeling of arrangement tolerances for the optical elements in a spaceborne Offner imaging hyperspectrometer
Rastorguev A.A., Kharitonov S.I., Kazanskiy N.L.

 

Joint Stock Company "Rocket and Space Center" Progress ", Samara, Russia,
Image Processing Systems Institute of RAS – Branch of the FSRC "Crystallography and Photonics" RAS, Samara, Russia,

Samara National Research University, Samara, Russia

 PDF

Abstract:
We propose mathematical tools and analyze the quality of an image in the detection plane of an Offner imaging hyperspectrometer, evaluating conditional tolerances for the position of the spectrometer elements. The results of modeling of a combined effect of the arrangement errors show that the probability for the hyperspectrometer to be successfully assembled in compliance with the requirements for image quality is not lower than 0.9.

Keywords:
hyperspectrometer, arrangement error, tolerances, Offner scheme, modeling.

Citation:
Rastorguev AA, Kharitonov SI, Kazanskiy NL. Modeling of arrangement tolerances for the optical elements in a spaceborne Offner imaging hyperspectrometer. Computer Optics 2018; 42(3): 424-431. DOI: 10.18287/2412-6179-2018-42-3-424-431.

References:

  1. Mouroulis P, Sellar RG, Wilson DW. Optical design of a compact imaging spectrometer for planetary mineralogy. Opt Eng 2007; 46(6): 063001. DOI: 10.1117/1.2749499.
  2. Mouroulis P, Wilson DW, Maker PD, Muller RE. Convex grating types for concentric imaging spectrometers. Appl Opt 1998; 37(31): 7200-7208. DOI: 10.1364/AO.37.007200.
  3. Prieto-Blanco X, Montero-Orille C, González-Nuñez H, Mouriz MD, Lago EL, de la Fuente R. The Offner imaging spectrometer in quadrature. Opt Express 2010; 18(12): 12756-12769. DOI: 10.1364/OE.18.012756.
  4. Prieto-Blanco X, Montero-Orille C, Couce B, R. de la Fuente. Analytical design of an Offner imaging spectrometer. Opt Express 2006; 14(20): 9156-9168. DOI: 10.1364/OE.14.009156.
  5. Lee JH, Jang TS, Yang H-S, Rhee S-W. Optical Design of A Compact Imaging Spectrometer for STSAT3. Journal of the Optical Society of Korea 2008; 12(4): 262-268. DOI: 10.3807/JOSK.2008.12.4.262.
  6. Lee JH, Lee CW, Kim YM, Kim JW. Optomechanical design of a compact imaging spectrometer for a microsatellite STSAT3. Journal of the Optical Society of Korea 2009; 13(2): 193-200. DOI: 10.3807/JOSK.2009.13.2.193.
  7. Lee JH, Kang KI, Park JH. A very compact imaging spectrometer for the micro-satellite STSAT3. International Journal of Remote Sensing 2011; V. 32, Issue 14: 3935-3946. DOI: 10.1080/01431161003801328.
  8. Lee JH, Jang TS, Kang KI, Rhee SW. Flight model development of a compact imaging spectrometer for a microsatellite STSAT3. Proc Optical Remote Sensing of the Environment 2010: OMB3. DOI: 10.1364/ORSE.2010.OMB3.
  9. Kazanskiy NL, Kharitonov SI, Karsakov SI, Khonina SN. Modeling action of a hyperspectrometer based on the Offner scheme within geometric optics. Computer Optics 2014; 38(2): 271-280.
  10. Kazanskiy NL, Kharitonov SI, Doskolovich LL, Pavelyev AV. Modeling the performance of a spaceborne hyperspectrometer based on the Offner scheme. Computer Optics 2015; 39(1): 70-76. DOI: 10.18287/0134-2452-2015-39-1-70-76.
  11. Karpeev SV, Khonina SN, Kharitonov SI. Study of the diffraction grating on a convex surface as a dispersive element. Computer Optics 2015; 39(2): 211-217. DOI: 10.18287/0134-2452-2015-39-2-211-217.
  12. Karpeev SV, Khonina SN, Murdagulov AR, Petrov MV. Alignment and study of prototypes of the Offner hyperspectrometer. Vestnik of the Samara State Aerospace University 2016; 15(1): 197-206. DOI: 10.18287/2412-7329-2016-15-1-197-206.
  13. Podlipnov VV, Skidanov RV. Calibration of an imaging hyperspectrometer. Computer Optics 2017; 41(6): 869-874. DOI: 10.18287/2412-6179-2017-41-6-869-874.
  14. Sokolsky MN. Tolerances and the quality of the optical image [In Russian]. Leningrad: “Mashinostroenie” Publisher; 1989. ISBN: 5-217-00547-5.
  15. Rastorguev AA, Kharitonov SI, Kazanskiy NL. Modeling the illuminance distribution in the detection plane of a spaceborne Offner hyperspectometer. Computer Optics 2017; 41(3): 399-405. DOI: 10.18287/2412-6179-2017-41-3-399-405.
  16. Slyusarev GG. Methods of calculating optical systems [In Russian]. Leningrad: “Mashinostroenie” Publisher; 1969.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20