Bragg gratings with parasitic scattering suppression for surface plasmon polaritons
Kadomina E.A., Bezus E.A., Doskolovich L.L.

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia,
Samara National Research University, 443086, Russia, Samara, Moskovskoye Shosse 34

 PDF

Abstract:
In the present work, we numerically study the performance (reflectance and scattering /absorption losses) of dielectric Bragg gratings for surface plasmon polaritons using a rigorous coupled-wave analysis technique. We demonstrate that the main reason behind the low efficiency of such Bragg reflectors is the parasitic out-of-plane scattering of SPP at the grating ridges. As efficient approaches for scattering suppression, we propose an increase in the grating period at a fixed aspect ratio and the utilization of a two-layer geometry of the grating ridge. We show that these two approaches enable increasing the efficiency of the SPP Bragg grating by 15-35%. The obtained results may find applications in the design of high-efficiency plasmonic elements.

Keywords:
surface plasmon polariton, Bragg grating, scattering suppression, plasmonics, nanophotonics.

Citation:
Kadomina EA, Bezus EA, Doskolovich LL. Bragg gratings with parasitic scattering suppression for surface plasmon polaritons. Computer Optics 2018; 42(5): 800-806. DOI: 10.18287/2412-6179-2018-42-5-800-806.

References:

  1. Ma R-M, Oulton RF, Sorger VJ, Zhang X. Plasmon lasers: coherent light source at molecular scales. Laser & Photonics Reviews 2013; 7(1): 1-21. DOI: 10.1002/lpor.201100040.
  2. Xie Z, Yu W, Wang T, Zhang H, FuY, Liu H, LiF, Lu Z, Sun Q. Plasmonic nanolithography: A review. Plasmonics 2011; 6: 565-580. DOI: 10.1007/s11468-011-9237-0.
  3. Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials 2010; 9: 205-213. DOI: 10.1038/nmat2629.
  4. Griesing S, Englisch A, Hartmann U. Refractive and reflective behavior of polymer prisms used for surface plasmon guidance. Opt Lett 2008; 33(6): 575-577. DOI: 10.1364/OL.33.000575.
  5. Hohenau A, KrennJR, StepanovAL, DrezetA, DitlbacherH, Steinberger B, Leitner A, Aussenegg FR. Dielectric optical elements for surface plasmons. Opt Lett 2005; 30(8): 893-895. DOI: 10.1364/OL.30.000893.
  6. Holmgaard T, Chen Z, Bozhevolnyi SI, Markey L, Dereux A, Krasavin AV, Zayats AV. Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides. Opt Express 2008; 16(18): 13585-13592. DOI: 10.1364/OE.16.013585.
  7. Bezus EA, Doskolovich LL, Soifer VA. Near-wavelength diffraction gratings for surface plasmon polaritons Opt Lett 2015; 40(21): 4935-4938. DOI: 10.1364/OL.40.004935.
  8. González MU, Stepanov AL, Weeber JC, Hohenau A, Dereux A, Quidant R, Krenn JR. Analysis of the angular acceptance of surface plasmon Bragg mirrors. Opt Lett 2007; 32(18): 2704-2706. DOI: 10.1364/OL.32.002704.
  9. Elser J, Podolskiy VA. Scattering-free plasmonic optics with anisotropic metamaterials. Phys Rev Lett 2008; 100(6): 066402. DOI: 10.1103/PhysRevLett.100.066402.
  10. Bezus EA, Doskolovich LL, Kazanskiy NL. Scattering suppression in plasmonic optics using a simple two-layer dielectric structure. Appl. Phys. Lett. 2011; 98(22): 221108. DOI: 10.1063/1.3597620.
  11. Bezus EA, Doskolovich LL, Kazanskiy NL. Low-scattering surface plasmon refraction with isotropic materials. Opt Express 2014; 22(11): 13547-13554. DOI: 10.1364/OE.22.013547.
  12. Avrutsky I, Soref R, Buchwald W. Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap. Opt Express 2010; 18(1): 348-363. DOI; 10.1364/OE.18.000348.
  13. Sannikov DG, Sementsov DI. The surface mode of a dielectric waveguide with metal substrate. Tech Phys Lett 2003; 29(5): 353-356. DOI: 10.1134/1.1579792.
  14. Randhawa S, González MU, Renger J, Enoch S, Quidant R. Design and properties of dielectric surface plasmon Bragg mirrors. Opt Express 2010; 18(14): 14496-14510. DOI: 10.1364/OE.18.014496.
  15. Moharam MG, Pommet DA, Grann EB, Gaylord TK. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 1995; 12(5): 1077-1086. DOI: 10.1364/JOSAA.12.001077.
  16. Silberstein E, Lalanne P, Hugonin JP, Cao Q. Use of grating theories in integrated optics. J Opt Soc Am A 2001; 18(11): 2865-2875. DOI: 10.1364/JOSAA.18.002865.
  17. Doskolovich LL, Kadomina EA, Kadomin II. Nanoscale photolithography by means of surface plasmon interference. J Opt A: Pure Appl Opt 2007; 9(10): 854-857. DOI: 10.1088/1464-4258/9/10/013.
  18. Bezus EA,Bykov DA, DoskolovichLL, KadominII. Diffraction gratings for generating varying-period interference patterns of surface plasmons. J Opt A: Pure Appl Opt 2008; 10(9): 095204. DOI: 10.1088/1464-4258/10/9/095204.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20