An X-ray diamond focuser based on an array of three-component elements
Nalimov A.G., Kotlyar V.V., Kononenko T.V., Konov V.I.

 

Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia,

Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia,

National Research Nuclear University „MEPhI“, Moscow, Russia

 PDF

Abstract:
The use of a compound refractive lens fabricated of a thin diamond plate is considered for focusing hard 9.25 keV X-rays. Each element of the diamond lens consists of a central cavity and two side cavities in the diamond plate. It is shown numerically that an array of 20 such elements is able to produce a focal spot of width FWHM = 57 nm. The lens aperture size is 30 µm and the diamond plate thickness is 2 mkm. The simulation shows that by proportionally increasing the dimensions of the lenses on all three axes, bringing the input pupil size to 1 µm, the X-ray focal spot width can be increased to 1 µm using the same lens array.

Keywords:
X-ray radiation, cylindric lens, diamond.

Citation:
Nalimov AG, Kotlyar VV, Kononenko TV, Konov VI. An X-ray diamond focuser based on an array of three-component elements. Computer Optics 2018; 42(6): 933-940. DOI: 10.18287/2412-6179-2018-42-6-933-940.

References:

  1. Kimura T, Matsuyama S, Yamauchi K, Nishino Y. Coherent X-ray zoom condenser lens for diffractive and scanning microscopy. Opt Express 2013; 21(8): 9267-9276. DOI: 10.1364/OE.21.009267.
  2. Vagovič P, Korytár D, Cecilia A, Hamann E, Baumbach T, Pelliccia D. Laboratory-based multi-modal X-ray microscopy and micro-CT with Bragg magnifiers. Opt Express 2015; 23(14): 18391-18400.
  3. Yang Y, Cheng Y, Heine R, Baumbach T. Contrast transfer functions for Zernike phase contrast in full-field transmission hard X-ray microscopy. Opt Express 2016; 24(6): 6063-6070. DOI: 10.1364/OE.24.006063.
  4. Zhang W, Zhu D, Lun M, Li C. Multiple pinhole collimator based X-ray luminescence computed tomography. Biomed Opt Express 2016; 7(7): 2506-2523. DOI: 10.1364/BOE.7.002506.
  5. Vegso K, Takano H, Wu Y, Hoshino M, Han H, Sharma Y, Momose A. The dynamical structural changes in polymers induced by laser irradiation studied by spectrum-tuned 4D X-ray phase tomography based on X-ray Talbot interferometry. JSAP-OSA Joint Symposia Abstracts 2017: 8P_A410_4.
  6. Kayser Y, Rutishauser S, Katayama T, Ohashi H, Kameshima T, Flechsig U, Yabashi M, David C. Wavefront metrology measurements at SACLA by means of X-ray grating interferometry. Opt Express 2014; 22(8): 9004-9015. DOI: 10.1364/OE.22.009004.
  7. Burkel E. Phonon spectroscopy by inelastic x-ray scattering. Rep Prog Phys 2000; 63(2): 171-232. DOI: 10.1088/0034-4885/63/2/203.
  8. Sinn H. Spectroscopy with meV energy resolution. J Phys Condens Matter 2001: 13(24): 7525-7537. DOI: 10.1088/0953-8984/13/34/305.
  9. Krisch M, Sette F. Inelastic X-Ray Scattering from Phonons. In Book: Cardona M, Merlin R, eds. Light scattering in Solids IX. Berlin, Heidelberg: Springer; 2007: 317-370. DOI: 10.1007/978-3-540-34436-0_5.
  10. Gerdau E, deWaard H. Nuclear resonant scattering of synchrotron radiation. Hyperfine Interactions 1999; 123-124(1-4): Preface. DOI: 10.1023/A:1017073002352.
  11. Röhlsberger R. Nuclear condensed matter physics with synchrotron radiation: Basic principles, methodology and applications. Berlin, Heidelberg: Springer-Verlag; 2004. ISBN: 978-3-540-23244-5.
  12. Arias C, Bani S, Catalli F, Lorenzetti G, Grifoni E, Legnaioli S, Pagnotta S, Palleschi V. X-ray fluorescence analysis and self-organizing maps classification of the Etruscan gold coin collection at the Monetiere of Florence. Appl Spectrosc 2016; 71(5): 817-822. DOI: 10.1177/0003702816641421.
  13. Dwyer JR, Harb M. Through a window, brightly: A review of selected nanofabricated thin-film platforms for spectroscopy, imaging, and detection. Appl Spectrosc 2017; 71(9): 2051-2075. DOI: 10.1177/0003702817715496.
  14. Alekhin MS, Patton G, Dujardin C, Douissard P-A, Lebugle M, Novotny L, Stampanoni M. Stimulated scintillation emission depletion X-ray imaging. Opt Express 2017; 25(2): 654-669. DOI: 10.1364/OE.25.000654.
  15. Polikarpov M, Kononenko TV, Ralchenko VG, Ashkinazi EE, Konov VI, Ershov P., Kuznetsov S, Yunkin V, Snigereva I, Polikarpov VM, Snigirev A. Diamond X-ray refractive lenses prodused by femto-second laser ablation. Proc SPIE 2016; 9963: 99630Q. DOI: 10.1117/12.2238029.
  16. Goto T, Matsuyama S, Hayashi H, Yamaguchi H, Sonoyama J, Akiyama K, Nakamori H, Sano Y, Kohmura Y, Yabashi M, Ishikawa T, Yamauchi K. Nearly diffraction-limited hard X-ray line focusing with hybrid adaptive X-ray mirror based on mechanical and piezo-driven deformation. Opt Express 2018; 26(13): 17477-17486. DOI: 10.1364/OE.26.017477.
  17. Nazmov VP. Litographic wide-aperture X-ray optics. PhD Thesis. Novosibirsk: 2018.
  18. Nazmov V, Reznikova E, Mohr J, Saile V, Tajiri H, Voigt A. Large-aperture two-dimensional X-ray refractive mosaic lenses. Appl Opt 2016; 55(25): 7138-7141. DOI: 10.1364/ao.55.007138.
  19. Nazmov V, Reznikova E, Mohr J, Schulz J, Voigt A. Development and characterization of ultra-high aspect ratio microstructures made by ultra-deep X-ray lithography. J Mater Process Technol 2015; 225: 170-177. DOI: 10.1016/j.jmatprotec.2015.05.030.
  20. Polikarpov M, Snigireva I, Morse J, Yunkin V, Kuznetsov S, Snigirev A. Large-acceptance diamond planar refractive lenses manufactured by laser cutting. J Synchrotron Radiat 2015; 22(1): 23-28. DOI: 10.1107/S1600577514021742.
  21. Kononenko TV, Ralchenko VG, Ashkinazi EE, Polikarpov M, Ershov P, Kuznetsov S, Yunkin V, Snigireva I, Konov VI. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing. Appl Phys A 2016; 122: 152. DOI: 10.1007/s00339-016-9683-9.
  22. Chen Z, Xie H, Deng B, Du G, Jiang H, Xiao T. Toward one nanometer X-ray focusing: a complex refractive lens design. Chinese Optics Letters 2014; 12(12): 123401.
  23. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999. ISBN: 978-0-521-64222-4.
  24. Nalimov AG, Kotlyar VV, Konov VI. Simulation of hard x-ray focusing using an array of cylindrical micro-holes in a diamond film [In Russian]. Computer Optics 2017; 41(6): 796-802. DOI: 10.18287/2412-6179-2017-41-6-796-802.
  25. Li Y. A High-accuracy Formula for Fast Evaluation of the Effect of Focal Shift. Journal of Modern Optics 1999; 38(9): 1815–9.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20