Manifestation of effects of the angular spectrum of the illuminating field in polychromatic interference microscopy of stratified objects
Dyachenko A.A., Maksimova L.A., Ryabukho V.P.

 

Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia,

Saratov State University, Saratov, Russia

 PDF

Abstract:
An effect of the angular spectrum width of a polychromatic illuminating field on the interference pattern color in optical microscopy of stratified objects is considered. Equations describing the intensity of interference patterns of thin stratified objects are obtained with due account for the influence of both frequency and angular spectra of the illuminating field. The angular spectrum width of the illuminating field is shown to affect the mutual coherence and phase difference of the interfering fields. Computer-simulated interference patterns for a thin layer under monochromatic and polychromatic illumination with different widths of the angular spectrum are presented. Quantitative analysis of the effect of angular aperture of white light on the colors of the resulting interference pattern is carried out. Changes in the colors of the layer interference patterns are experimentally studied when changing the width of the angular spectrum of the illuminating field. Color variations of the interference patterns obtained experimentally and theoretically are compared.

Keywords:
optical microscopy, interference, interference images, angular spectrum, spatial coherence, coherence length, interference color, digital image processing, stratified microstructure.

Citation:
Dyachenko AA, Maksimova LA, Ryabukho VP. Manifestation of effects of the angular spectrum of the illuminating field in polychromatic interference microscopy of stratified objects. Computer Optics 2018; 42(6): 959-969. DOI: 10.18287/2412-6179-2018-42-6-959-969.

References:

  1. De Groot P. Princeples of interference microscopy for the measurement of surface topography. Adv Opt Photon 2015; 7(1): 1-65. DOI: 10.1364/AOP.7.000001
  2. Dubois A, ed. Handbook of full-field optical coherence microscopy: Technology and applications. Singapore: Pan Stanford Publishing Pte Ltd; 2016. ISBN: 978-9-8146-6916-0.
  3. Tychinskii VP. Dynamic phase microscopy: is а 'dialogue' with the cell possible? Physics – Uspekhi 2007; 50: 513-528. DOI: 10.1070/PU2007v050n05ABEH006222.
  4. Levin GG, Vishnyakov GN, Minaev VL. An automated interference microscope for measuring dynamic objects. Instruments and Experimental Techniques 2013; 56(6): 686-690. DOI: 10.1134/S0020441214010060.
  5. Dyachenko AA, Ryabukho VP. Measurement of the optical thickness of a layered object from interference colors in white-light microscopy [In Russian]. Computer Optics 2017; 41(5): 670-679. DOI: 10.18287/2412-6179-2017-41-5-670-679.
  6. Biegen JF. Calibration requirements for Mirau and Linnik microscope interferometers. Appl Opt 1989; 28(11): 1972-1974. DOI: 10.1364/AO.28.001972.
  7. Creath K. Calibration of numerical aperture effects in interferometric microscope objectives. Appl Opt 1989; 28(16): 3333-3338. DOI: 10.1364/AO.28.003333.
  8. Kino GS. Mirau correlation microscope. Appl Opt 1990; 29(26): 3775-3783. DOI: 10.1364/AO.29.003775.
  9. Sheppard CJR, Larkin KG. Effect of numerical aperture on interference fringe spacing. Appl Opt 1995; 34(22): 4731-4734. DOI: 10.1364/AO.34.004731.
  10. Dubois A, Selb J, Vabre L, Boccara A-C. Phase measurements with wide-aperture interferometers. Appl Opt 2000; 39(14): 2326-2331. DOI: 10.1364/AO.39.002326.
  11. Abdulhalim I. Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy. J Opt A: Pure Appl Opt 2006; 8(11): 952-958. DOI: 10.1088/1464-4258/8/11/004.
  12. Rosen J, Yariv A. Longitudinal spatial coherence of optical radiation. Opt Commun 1995; 117(1-2): 8-12. DOI: 10.1016/0030-4018(95)00086-N.
  13. Ryabukho VP, Lyakin DV. The effects of longitudinal spatial coherence of light in interference experiments. Opt Spectrosc 2005; 98(2): 273-283. DOI: 10.1134/1.1870071.
  14. Abdulhalim I. Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography. Annalen der Physik. 2012; 524(12): 787-804. – DOI: 10.1002/andp.201200106.
  15. Ryabukho VP, Lyakin DV, Lychagov VV. Longitudinal purely spatial coherence of a light field. Optics and Spectroscopy 2006; 100(5): 724-733. DOI: 10.1134/S0030400X06050146.
  16. Ryabukho VP, Lyakin DV, Lychagov VV. Longitudinal coherence of an optical field of extended spatially noncoherent source [In Russian]. Computer Optics 2009; 33(2): 175-184.
  17. Safrani A, Abdulhalim I. Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography. Appl Opt 2011; 50(18): 3021-3027. DOI: 10.1364/AO.50.003021.
  18. Ryabukho VP, Lyakin DV, Grebenyuk AA, Klykov SS. Wiener-Khintchin theorem for spatial coherence of optical wave field. J Opt 2013; 15(2): 025405. DOI: 10.1088/2040-8978/15/2/025405.
  19. Lyakin DV, Ryabukho VP. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy. Quantum Electron 2013; 43(10): 949-957. DOI: 10.1070/QE2013v043n10ABEH015187.
  20. Lyakin DV, Ryabukho PV, Ryabukho VP. Mutual spatiotemporal coherence of optical fields in an amplitude-splitting interferometer. Optics and Spectroscopy 2017; 122(2): 329-337. DOI: 10.1134/S0030400X17020175.
  21. Ahmad A, Srivastava V, Dubey V, Mehta DS. Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity. Appl Phys Lett 2015; 106(9): 093701. DOI: 10.1063/1.4913870.
  22. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 2002. ISBN: 978-0-521-64222-4.
  23. Brundavanam MM, Viswanathan NK, Rao DN. Effect of input spectrum on the spectral switch characteristics in a white light Michelson interferometer. J Opt Soc Am A 2009; 26(12): 2592-2599. DOI: 10.1364/JOSAA.26.002592.
  24. Kalyanov AL, Lychagov VV, Smirnov IV, Ryabukho VP. Effect of spectral properties of image sensor on interference experiment [In Russian]. Izvestiya of Saratov University. Series: Physics 2011; 11(2): 25-30.
  25. Gonzalez RC, Woods RE. Digital image processing. 3rd ed. Upper Saddle River, NJ: Prentice Hall; 2008. ISBN: 978-0-13-168728-8.
  26. Malinova LI, Akhmadullina LG. P1208. Red blood cell distribution width and peripheral blood cells parameters in patients with heart failure and a reduced ejection fraction vs heart failure with “preserved” ejection fraction. In Article: Poster session: Clinical. European Journal of Heart Failure 2013. 12(S1): S269. DOI: 10.1093/eurjhf/hst009.
  27. Chi G, Ahmad A, Malik QZ, Shaukat H, Jafarizade M, Kahe F, Kalayci A. Prognostic value of red cell distribution width in acute coronary syndrome. Open Acc Blood Res Transfus J 2018; 1(4): 555570. DOI: 10.19080/OABTJ.2018.01.555570.
  28. Kraiskii AV, Mironova TV, Sultanov TT. Narrow-band radiation wavelength measurement by processing digital photographs in RAW format. Quantum Electronics 2012; 42(12): 1137-1139. DOI: 10.1070/QE2012v042n12ABEH014914.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20