Big data analysis in a geoinformatic problem of short-term traffic flow forecasting based on a k nearest neighbors method
Agafonov A.A., Yumaganov A.S., Myasnikov V.V.

 

Samara National Research University, 443086, Russia, Samara, Moskovskoye Shosse 34,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF

Abstract:
Accurate and timely information on the current and predicted traffic flows is important for the successful deployment of intelligent transport systems. These data play an essential role in traffic management and control. Using traffic flow information, travelers could plan their routes to avoid traffic congestion, reduce travel time and environmental pollution, as well as improving traffic operation efficiency in general. In this paper, we propose a distributed model for short-term traffic flow prediction based on a k nearest neighbors method, that takes into account spatial and temporal traffic flow distributions. The proposed model is implemented as a MapReduce based algorithm in an Apache Spark framework. An experimental study of the proposed model is carried out on a traffic flow data in the transportation network of Samara, Russia. The results demonstrate that the proposed model has high predictive accuracy and an execution time sufficient for real-time prediction.

Keywords:
traffic flow, short-term forecasting, k nearest neighbors, MapReduce.

Citation:
Agafonov AA, Yumaganov AS, Myasnikov VV. Big data analysis in a geoinformatic problem of short-term traffic flow forecasting based on a k nearest neighbors method. Computer Optics 2018; 42(6): 1101-1111. DOI: 10.18287/2412-6179-2018-42-6-1101-1111.

References:

  1. Lana I, Del Ser J, Velez M. Vlahogianni E. Road traffic forecasting: Recent advances and new challenges. IEEE Intelligent Transportation Systems Magazine 2018; 10(2): 93-109. DOI: 10.1109/MITS.2018.2806634.
  2. Smith BL, Williams BM. Oswald RK. Comparison of parametric and nonparametric models for traffic flow forecasting. Transportation Research Part C: Emerging Technologies 2002; 10(4): 303-321. DOI: 10.1016/S0968-090X(02)00009-8
  3. Smith BL, Demetsky MJ. Traffic flow forecasting: comparison of modeling approaches. Journal of Transportation Engineering 1997; 123(4): 261-266. DOI: 10.1061/(ASCE)0733-947X(1997)123:4(261)
  4. Xia D, Wang B, Li H, Li Y, Zhang Z. A distributed spatial-temporal weighted model on MapReduce for short-term traffic flow forecasting. Neurocomputing 2016; 179: 246-263. DOI: 10.1016/j.neucom.2015.12.013.
  5. Lv Y, Duan Y, Kang W, Li Z, Wang FY. Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems 2015; 16(2): 865-873. DOI: 10.1109/TITS.2014.2345663.
  6. Vlahogianni E, Golias J, Karlaftis M. Short-term traffic forecasting: Overview of objectives and methods. Transport Reviews 2004; 24(5): 533-557. DOI: 10.1080/0144164042000195072.
  7. Vlahogianni E, Karlaftis M, Golias J. Short-term traffic forecasting: Where we are and where we’re going. Transportation Research Part C: Emerging Technologies 2014; 43(1): 3-19. DOI: 10.1016/j.trc.2014.01.005.
  8. Karlaftis MG, Vlahogianni EI. Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. Transportation Research Part C: Emerging Technologies 2011; 19(3): 387-389. DOI: 10.1016/j.trc.2010.10.004.
  9. Shekhar S, Williams BM. Adaptive seasonal time series models for forecasting short-term traffic flow. Transportation Research Record 2007; 2024(1): 116-125. DOI: 10.3141/2024-14.
  10. Chandra SR, Al-Deek H. Predictions of freeway traffic speeds and volumes using vector autoregressive models. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations 2009; 13(2): 53-72. DOI: 10.1080/15472450902858368.
  11. Guo J, Williams BM. Real-time short-term traffic speed level forecasting and uncertainty quantification using layered Kalman filters. Transportation Research Record 2010; 2175(1): 28-37. DOI: 10.3141/2175-04.
  12. Wang Y, Papageorgiou M. Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. Transportation Research Part B: Methodological 2005; 39(2); 141-167. DOI: 10.1016/j.trb.2004.03.003.
  13. Fusco G, Colombaroni C, Comelli L, Isaenko N. Short-term traffic predictions on large urban traffic networks: Applications of network-based machine learning models and dynamic traffic assignment models. Proc 4th IEEE Int Conf Models and Technologies for Intelligent Transportation Systems (MT-ITS) 2015: 93-101. DOI: 10.1109/MTITS.2015.7223242.
  14. Yin H, Wong S, Xu J, Wong C. Urban traffic flow prediction using a fuzzy-neural approach. Transportation Research Part C: Emerging Technologies 2002; 10(2): 85-98. DOI: 10.1016/S0968-090X(01)00004-3.
  15. Lana I, Del Ser J, Velez M, Oregi I. Joint feature selection and parameter tuning for short-term traffic flow forecasting based on heuristically optimized multi-layer neural networks. Advances in Intelligent Systems and Computing 2017; 514: 91-100. DOI: 10.1007/978-981-10-3728-3_10.
  16. Zheng Z, Su D. Short-term traffic volume forecasting: a k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm. Transportation Research Part C: Emerging Technologies 2014; 43(1): 143-157. DOI: 10.1016/j.trc.2014.02.009.
  17. Cai P, Wang Y, Lu G, Chen P, Ding C, Sun J. A spatiotemporal correlative K-nearest neighbor model for short-term traffic multistep forecasting. Transportation Research Part C: Emerging Technologies 2016; 62: 21-34. DOI: 10.1016/j.trc.2015.11.002.
  18. Wu CH, Ho JM, Lee DT. Travel-time prediction with support vector regression. IEEE Transactions on Intelligent Transportation Systems 2004; 5(4): 276-281. DOI: 10.1109/TITS.2004.837813.
  19. Su H, Zhang L, Yu S. Short-term traffic flow prediction based on incremental support vector regression. Third International Conference on Natural Computation 2007; 1: 640-645. DOI: 10.1109/ICNC.2007.661.
  20. Fei X, Lu CC, Liu KA. Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction. Transportation Research Part C: Emerging Technologies 2011; 19(6): 1306-1318. DOI: 10.1016/j.trc.2010.10.005.
  21. Zhu Z, Peng B, Xiong C, Zhang L. Short-term traffic flow prediction with linear conditional Gaussian Bayesian network. Journal of Advanced Transportation 2016; 50(6): 1-13. DOI: 10.1002/atr.1392.
  22. Sun S, Zhang C. The selective random subspace predictor for traffic flow forecasting. IEEE Transactions on Intelligent Transportation Systems 2007; 8(2): 367-373. DOI: 10.1109/TITS.2006.888603.
  23. Agafonov A, Myasnikov V. Traffic flow forecasting algorithm based on combination of adaptive elementary predictors. In Book: Khachay MYu, Konstantinova N, Panchenko A, Ignatov D, Labunets VG, eds. Analysis of Images, Social Networks and Texts: AIST 2015. Cham: Springer; 2015: 163-174. DOI: 10.1007/978-3-319-26123-2_16.
  24. Zhang N, Zhang Y, Lu H. Seasonal autoregressive integrated moving average and support vector machine models: prediction of short term traffic flow on freeways. Transportation Research Record 2011; 2215(1): 85-92. DOI: 10.3141/2215-09
  25. Moretti F, Pizzuti S, Panzieri S, Annunziato M. Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing 2015; 167(C): 3-7. DOI: 10.1016/j.neucom.2014.08.100.
  26. Chrobok R, Kaumann O, Wahle J, Schreckenberg M. Different methods of traffic forecast based on real data. European Journal of Operational Research 2004; 155(3): 558-568. DOI: 10.1016/j.ejor.2003.08.005.
  27. Laña I, Del Ser J, Olabarrieta I. Understanding daily mobility patterns in urban road networks using traffic flow analytics. Proc IEEE/IFIP Network Operations and Management Symposium 2016: 1157-1162. DOI: 10.1109/NOMS.2016.7502980.
  28. Jain AK. Data clustering: 50 years beyond k-means. Pattern Recognition Letters 2010; 31(8): 651-666. DOI: 10.1016/j.patrec.2009.09.011.
  29. Han J, Kamber M, Pei J. Data mining: Concepts and techniques. San Francisco: Morgan Kaufmann Publishers Inc; 2006. ISBN: 978-1-55860-901-3.
  30. Myasnikov EV. Hyperspectral image segmentation using dimensionality reduction and classical segmentation approaches. Computer Optics 2017; 41(4): 564-572. DOI: 10.18287/2412-6179-2017-41-4-564-572.
  31. Carmel D, Roitman H, Zwerdling N. Enhancing cluster labeling using wikipedia. Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval 2009: 139-146. DOI: 10.1145/1571941.1571967.
  32. Ji Y, Geroliminis N. On the spatial partitioning of urban transportation networks. Transportation Research Part B: Methodological 2012; 46(10): 1639-1656. DOI: 10.1016/j.trb.2012.08.005.
  33. Ding CHQ, He X, Zha H, Gu M, Simon HD. A min-max cut algorithm for graph partitioning and data clustering. Proc 2001 IEEE International Conference on Data Mining 2001: 107-114. DOI: 10.1109/ICDM.2001.989507.
  34. Apache SparkTM. Source: áhttps://spark.apache.org/ñ.
  35. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM 2008; 51(1): 107-113. DOI: 10.1145/1327452.1327492.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20