Catastrophe theory and caustics of radially symmetric beams
Kharitonov S.I., Volotovsky S.G., Khonina S.N.

 

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia;
Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia

Abstract:
The work is devoted to the study of the caustics of radial beams. Analytical expressions for caustic surfaces of wave fronts created by radially symmetric diffractive optical elements are found. The result is presented in a curvilinear coordinate system consistent with the caustic surface. An asymptotic representation of the Kirchhoff integral near the optical axis is obtained, ensuring the correct calculations in the non-paraxial case.

Keywords:
catastrophe theory, caustics, radially symmetric beams, asymptotic representation of the Kirchhoff integral.

Citation:
Kharitonov SI, Volotovsky SG, Khonina SN. Catastrophe theory and caustics of radially symmetric beams. Computer Optics 2019; 43(2): 159-167. DOI: 10.18287/2412-6179-2019-43-2-159-167.

References:

  1. Kravtsov YuA, Orlov YuI. Geometrical optics of inhomogeneous media. Berlin, Heidelberg: Springer-Verlag; 1990. ISBN: 978-3-642-84033-3.
  2. Born М, Wolf Е. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999. ISBN: 978-0-521-64222-4.
  3. Arnol'd VI. Singularinies of smooth mappings. Russian Math Surveys 1968; 23(1): 1-43. DOI: 10.1070/RM1968v023n01ABEH001232.
  4. Poston T, Stewart I. Catastrophe theory and its applications. London, San Francisco: Pitman, 1978.
  5. Gilmore R. Catastrophe theory for scientists and engineers. New York: John Wiley & Sons Inc; 1981. ISBN: 978-0-471-05064-3.
  6. Babich VM, Buldyrev VS. Asymptotic methods in short-wavelength diffraction theory. Oxford, UK: Alpha Science Intl Ltd; 2009. ISBN: 978-1-84265-232-9.
  7. James GL. Geometrical theory of diffraction for electromagnetic waves. 3rd ed. London, UK: Peter Peregrinus Ltd; 1986. ISBN: 978-0-86341-062-8.
  8. Vainberg BR. Asymptotic methods in equations of mathematical physics. New York, London: Gordon and Breach Science Publishers; 1989. ISBN: 978-2-88124-664-7.
  9. Maslov VP. Théorie des perturbations et méthodes asymptotiques. Paris: Dunod; 1972.
  10. Maslov VP. Operator methods [In Russian]. Moscow: "Nauka" Publisher; 1973.
  11. Kharitonov SI, Volotovsky SG, Khonina SN. Hybrid asymptotic method for analyzing caustics of optical elements in the axially symmetric case. Computer Optics 2017; 41(2): 175-182. DOI: 10.18287/2412-6179-2017-41-2-175-182.
  12. Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Willey & Sons; 2002. ISBN: 978-0-471-09533-0.
  13. Marathay AS, McCalmont JF. On the usual approximation used in the Rayleigh–Sommerfeld diffraction theory. J Opt Soc Am A 2004; 21: 510-516.
  14. Khonina SN, Ustinov AV, Kovalev AA, Volotovsky SG. Propagation of the radially-limited vortical beam in a near zone. Part I. Calculation algorithms. Computer Optics 2010; 34(3): 315-329.
  15. Luneburg RK. Mathematical theory of optics. Berkeley, CA: University of California Press, 1966.
  16. Khonina SN, Ustinov AV, Kovalyov AA, Volotovsky SG. Near-field propagation of vortex beams: models and computation algorithms. Optical Memory and Neural Networks (information optics) 2014; 23(2): 50-73. DOI: 10.3103/S1060992X14020027.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20