Comparison of backward flow values in the sharp focus of light fields with polarization and phase singularity
Kotlyar V.V., Nalimov A.G., Stafeev S.S.


IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia;
Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia

Using Jones matrices and vectors, we show that an optical metasurface composed of a set of subwavelength binary diffraction gratings and characterized by an anisotropic transmittance described by a polarization rotation matrix by the angle mφ, where φ is the polar angle, forms an m-th order azimuthally or radially polarized beam when illuminated by linearly polarized light, generating an optical vortex with the topological charge m upon illumination by circularly polarized light. Such a polarization-phase converter (PPC) performs a spin-orbit transformation, similar to that performed by liquid-crystal q-plates. Using a FDTD method, it is numerically shown that when illuminating the PPC by a uniformly (linearly or circularly) polarized field with topological charge m = 2 and then focusing the output beam with a binary zone plate, a reverse on-axis light flow is formed, being comparable in magnitude with the direct optical flow. Moreover, the reverse flows obtained when focusing the circularly polarized optical vortex with the topological charge m = 2 and the second-order polarization vortex are shown to be the same in magnitude.

optical vortex, polarization, backward flux, metalens.

Kotlyar VV, Nalimov AG, Stafeev SS. Comparison of backward flow values in the sharp focus of light fields with polarization and phase singularity. Computer Optics 2019; 43(2): 174-183. DOI: 10.18287/2412-6179-2019-43-2-174-183.


  1. Nye JF, Berry MV. Dislocations in wave trains. Proc Roy Soc Lond A, 1974; 336: 165-190.
  2. Soskin MS, Vasnetsov MV. Singular optics. In Book: Wolf E, ed. Progress in optics. Ch 4. Elsevier; 2001: 219-276.
  3. Swartzlander GA, Jr. The optical vortex coronagraph. J Opt A 2009; 11: 094022.
  4. Gahagan KT, Swartzlander GA. Optical vortex trapping of particles. Opt Lett 1996; 21: 827-829.
  5. Gecevičius M, Drevinskas R, Beresna M, Kazansky PG. Single beam optical vortex tweezers with tunable orbital angular momentum. Appl Phys Lett 2014; 104: 231110.
  6. Simpson NB, Dholakia K, Allen L, Padgett MJ. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett 1997; 22: 52-54.
  7. Volke-Sepulveda K, Garcés-Chávez V, Chávez-Cerda S, Arlt J, Dholakia K. Orbital angular momentum of a high-order Bessel light beam. J Opt B 2002; 4: S82-S89.
  8. Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi TD, Istomin YN, Ibragimov NH, Khamitova R. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys Rev Lett 2007; 99: 087701.
  9. Bandyopadhyay A, Singh RP. Wigner distribution of elliptical quantum optical vortex. Opt Commun 2011; 284: 256-261.
  10. Bandyopadhyay A, Prabhakar S, Singh RP. Entanglement of a quantum optical elliptic vortex. Phys Lett A 2011; 375: 1926-1929.
  11. McMorran BJ, Agrawal A, Anderson IM, Herzing AA, Lezec HJ, McClelland JJ, Unguris J. Electron vortex beams with high quanta of orbital angular momentum. Science 2011; 331: 192-195.
  12. Stafeev SS, Nalimov AG. Longitudinal component of the Poynting vector of a tightly focused optical vortex with circular polarization. Computer Optics 2018; 42(2): 190-196. DOI: 10.18287/2412-6179-2018-42-2-190-196.
  13. Sukhov S, Dogariu A. On the concept of “tractor beams”. Opt Lett 2010; 35: 3847-3849.
  14. Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens. Computer Optics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
  15. Mitri FG. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves. J Opt Soc Am A 2016; 33: 1661-1667.
  16. Salem MA, Bagci H. Energy flow characteristics of vector X-wave. Opt Express 2011; 19: 8526-8532.
  17. Vaveliuk P, Martinez-Matos O. Negative propagation effect in nonparaxial Airy beams. Opt Express 2012; 20: 26913-26921.
  18. Berry MV. Quantum backflow, negative kinetic energy, and optical retro-propagation. J Phys A: Mathem & Theor 2010; 43: 415302.
  19. Irvine WNM, Boumeester D. Linked and knotted beams of light. Nat Phys 2008; 4: 716-720.
  20. Sugic D, Dennis MR. Singular knot bundle in light. J Opt Soc Am A 2018; 35(12): 1987-1999.
  21. Yu N, Genevet P, Kats MA, Avieta F, Terienne JP, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized lows of reflection and refraction. Science 2011; 334(6054): 333-337.
  22. Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnology, 2015; 10(11): 937-43.
  23. Kotlyar VV, Nalimov AG, Stafeev SS, Hu G, O’Faolain L, Koltyar MV, Gibson D, Song S. Thing high numerical aperture metalens. Opt Express 2017; 25(7): 8158-8167. DOI: 10.1364/OE.25.008158.
  24. Tian S, Guo H, Hu J, Zhuang S. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Opt Express 2019; 27(2): 680-688.
  25. Park CS, Koirala I, Gao S, Shrestha VR, Lee SS, Choi DY. Structural color filter based on an all-dielectric metasurface exploiring silicon-rich silicon nitride nanodisks. Opt Express 2019; 27(2): 667-678.
  26. Kotlyar VV, Zalyalov OK. Design of diffractive optical elements modulating polarization. Optik 1996; 103(3): 125-130.
  27. Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett 2002; 27(13): 1141-1143.
  28. Niv A, Biener G, Kleiner V, Hasman E. Propgation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements. Opt Lett 2004; 29(3): 238-240.
  29. Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 2006; 96: 163905.
  30. Kotlyar VV, Khonina SN, Uspleniev GV, Shinkarev MV, Soifer VA. The phase rotor filter. J Mod Opt 1992; 39(5): 1147-1154. DOI: 10.1080/09500349214551151.
  31. Kotlyar VV, Nalimov AG. Sharp focusing of vector optical vortices using a metalens. J Opt 2018; 20(7): 075101. DOI: 10.1088/2040-8986/aac4b3.
  32. Kotlyar VV, Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921.
  33. Stafeev SS, Nalimov AG, Kotlyar VV. Energy backflow in a focal spot of the cylindrical vector beam. Computer Optics 2018; 42(5): 744-750. DOI: 10.18287/2412-6179-2018-42-5-744-750.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20